Распределение де Муавра ныне известно как нормальная, или, в соответствии с ее формой, колоколообразная кривая. Эта кривая показывает, что наибольшее число наблюдений группируется в центре, вблизи среднего значения, вычисленного для суммарного числа наблюдений. Она симметрично спускается по обе стороны от среднего значения, вблизи его круто, а затем все более полого. Другими словами, результаты наблюдений, далекие от среднего значения, менее вероятны, чем близкие к нему. Форма кривой де Муавра позволила ему вычислить статистическую меру ее дисперсии относительно среднего значения. Эта мера, известная как стандартное или среднее квадратичное отклонение*(В русской научной литературе чаще используется второй термин, известный также как среднее квадратическое. — Примеч. науч. редактора.), чрезвычайно важна для решения вопроса о том, включает ли в себя совокупность наблюдений достаточно репрезентативную для изучаемой совокупности выборку. В нормальном распределении приблизительно 68% результатов наблюдений оказываются в пределах одного среднего квадратичного отклонения от среднего значения и 98% — в пределах двух средних квадратичных отклонений. Среднее квадратичное отклонение может сказать нам, не имеем ли мы дело со случаем «голова-в-духовке-ноги-в-холодильнике», когда любые рассуждения о среднем являются бессмысленными. Среднее квадратичное отклонение может также сказать нам, что 25 550 манипуляций с камешками Якоба позволяют весьма точно оценить соотношение числа черных и белых камешков в кувшине, поскольку относительно малое число наблюдений будет сильно отличаться от среднего значения. Де Муавр был поражен закономерностью, которая проявлялась с увеличением числа случайных и независимых наблюдений; он относил эту упорядоченность к предписаниям Всемогущего. Это приводит к мысли, что при правильно выбранных условиях измерения можно в самом деле преодолеть неопределенность и приручить риск. Используя курсив, чтобы подчеркнуть значение сказанного, де Муавр так подытожил свои исследования: «Случай порождает Отклонения от закономерности, однако бесконечно велики Шансы, что с течением Времени эти Отклонения окажутся пренебрежимо ничтожными относительно повторяемости того Порядка, который естественным образом является результатом БОЖЕСТВЕННОГО ПРЕДНАЧЕРТАНИЯ»13. Вкладом де Муавра в математику был инструмент, который сделал возможной оценку вероятности того, что заданное число наблюдений попадет в некоторую область вокруг истинного отношения. Этот результат нашел широкое практическое применение. — 103 —
|