Против Богов. Укрощение риска

Страница: 1 ... 101102103104105106107108109110111 ... 291

Прайс начал с изучения записей в лондонских регистрационных книгах, но математическое ожидание продолжительности жизни, получаемое на основе этих записей, оказалось значительно ниже имевшихся данных о смертности19. Тогда он обратился в графство Нортгемптон, где записи велись более аккуратно, чем в Лондоне. Он опубликовал результаты своих изысканий в 1771 году в книге, озаглавленной «Заметки о страховых выплатах» («Observations on Reversionary Payments»), которая оставалась катехизисом страхов­щиков до конца XIX столетия. Эта работа принесла ему славу осно­воположника страховой статистики как комплекса вероятностных методов, применяемых ныне всеми страховыми компаниями в ка­честве основы исчисления сборов и выплат.

Однако в работе Прайса были серьезные, весьма дорогостоящие ошибки, частично обусловленные погрешностями исходных данных, которые не охватывали большое число незарегистрированных рож­дений. Более того, он завысил коэффициенты смертности для ран­них возрастов и занизил их для старших, а его оценки величины миграции населения в Нортгемптон и из него оказались неточны­ми. Наиболее серьезные последствия имело занижение ожидаемой продолжительности жизни, что привело к значительному завыше­нию сборов при страховании жизни. «Общество справедливости» обогатилось на этой ошибке, а британское правительство, использо­вавшее те же таблицы для определения выплат покупателям по­жизненной ренты, понесло значительные убытки20.

Через два года после смерти Байеса Прайс послал копию его «очень остроумной» работы некоему Джону Кантону, другому члену Королев­ского общества, с сопроводительным письмом, дающим представление о намерениях, с которыми Байес ее писал. Впоследствии в 1764 году Королевское общество опубликовало ее в «Philosophical Transactions», но и это не помешало новаторской работе Байеса прозябать в безвест­ности в течение двадцати лет.

Здесь приводится постановка Байесом задачи, которую он пытал­ся решить:

ЗАДАЧА

Дано: число случаев [в выборке], в которых некое событие наступи­ло, и число случаев, в которых оно не наступило.

Требуется определить: вероятность того, что вероятность на­ступления события в одном испытании [в генеральной совокупности] находится в некоем заданном интервале значений21.

Поставленная здесь задача в точности обратна задаче, постав­ленной Якобом Бернулли примерно шестьюдесятью годами ранее (с. 136). Байес задается вопросом, как определить вероятность того, что событие будет иметь место, при том что мы знаем только, что оно в определенном числе случаев наступило и в некоем другом числе случаев не наступило. Другими словами, булавка может оказаться бракованной или качественной. Если мы обнаружим десять брако­ванных булавок в выборке из ста, какова вероятность, что во всей совокупности булавок — не только в выборке из ста — процент бра­ка окажется в интервале между 9 и 11%?

— 106 —
Страница: 1 ... 101102103104105106107108109110111 ... 291