Теорема Якоба Бернулли о вычислении вероятности a postetiori известна как закон больших чисел. Вопреки распространенной точке зрения этот закон не дает метода оценки наблюдаемых фактов, которые являются лишь несовершенным отображением явления в целом. Не следует из него и утверждение, будто увеличение числа наблюдений влечет за собой возрастание вероятности совпадения того, что мы видим, с тем, что мы исследуем. Закон не является и средством улучшения качества тестов: Якоб не забыл замечание Лейбница и отверг свои первоначальные идеи о поиске четких ответов на основе эмпирических тестов. Якоба интересовало другое определение вероятности. Предположим, вы подбрасываете монету. Закон больших чисел не утверждает, что среднее число выпадений орла будет приближаться к 50% при увеличении числа бросков; простые вычисления дадут вам этот ответ и избавят от утомительного подбрасывания монеты. Закон, скорее, утверждает, что при увеличении числа бросков будет возрастать вероятность того, что процент появлений орла в общем числе бросков будет отличаться от 50% на величину, меньшую сколь угодно малой заданной величины. В слове «отличаться» все дело. Речь идет не об истинности значения 50%, а о вероятности того, что отклонение наблюдаемого среднего значения вероятности от расчетного будет меньше, чем, скажем, 2%, — другими словами, что с увеличением числа бросков эта вероятность будет возрастать. Это не означает, что при бесконечном числе бросков отклонений не будет; Якоб явным образом исключает этот случай. Не означает это и того, что отклонение будет с необходимостью становиться пренебрежимо малым. Закон лишь утверждает, что среднее значение при большом числе бросков будет с большей, чем при малом числе бросков, вероятностью отличаться от истинного среднего на величину, меньшую наперед заданной. Но всегда останется возможность того, что наблюдаемый результат будет отличаться от истинного среднего на величину, большую некоей заданной. Семи миллионов жителей Москвы оказалось недостаточно для профессора статистики. Закон больших чисел не надо путать с законом о среднем. Математики говорят нам, что вероятность выпадения орла при одном бросании монеты составляет 50%, — но результат каждого броска не зависит от всех остальных. Он не зависит от результата предшествующих бросков и не влияет на результаты последующих. Следовательно, закон больших чисел не утверждает, что вероятность выпадения орла для отдельного броска станет выше 50%, если в первых ста или миллионе бросков только в 40% случаев выпал орел. Закон больших чисел отнюдь не обещает, что вы отыграетесь после серии проигрышей. — 98 —
|