Против Богов. Укрощение риска

Страница: 1 ... 93949596979899100101102103 ... 291

Теорема Якоба Бернулли о вычислении вероятности a postetiori известна как закон больших чисел. Вопреки распространенной точке зрения этот закон не дает метода оценки наблюдаемых фак­тов, которые являются лишь несовершенным отображением явле­ния в целом. Не следует из него и утверждение, будто увеличение числа наблюдений влечет за собой возрастание вероятности совпа­дения того, что мы видим, с тем, что мы исследуем. Закон не яв­ляется и средством улучшения качества тестов: Якоб не забыл за­мечание Лейбница и отверг свои первоначальные идеи о поиске четких ответов на основе эмпирических тестов.

Якоба интересовало другое определение вероятности. Предполо­жим, вы подбрасываете монету. Закон больших чисел не утвержда­ет, что среднее число выпадений орла будет приближаться к 50% при увеличении числа бросков; простые вычисления дадут вам этот ответ и избавят от утомительного подбрасывания монеты. Закон, скорее, утверждает, что при увеличении числа бросков будет возра­стать вероятность того, что процент появлений орла в общем числе бросков будет отличаться от 50% на величину, меньшую сколь угод­но малой заданной величины. В слове «отличаться» все дело. Речь идет не об истинности значения 50%, а о вероятности того, что отклонение наблюдаемого среднего значения вероятности от расчетно­го будет меньше, чем, скажем, 2%, — другими словами, что с уве­личением числа бросков эта вероятность будет возрастать.

Это не означает, что при бесконечном числе бросков отклонений не будет; Якоб явным образом исключает этот случай. Не означает это и того, что отклонение будет с необходимостью становиться пренебрежимо малым. Закон лишь утверждает, что среднее зна­чение при большом числе бросков будет с большей, чем при малом числе бросков, вероятностью отличаться от истинного среднего на величину, меньшую наперед заданной. Но всегда останется воз­можность того, что наблюдаемый результат будет отличаться от истинного среднего на величину, большую некоей заданной. Семи миллионов жителей Москвы оказалось недостаточно для профессо­ра статистики.

Закон больших чисел не надо путать с законом о среднем. Ма­тематики говорят нам, что вероятность выпадения орла при одном бросании монеты составляет 50%, — но результат каждого броска не зависит от всех остальных. Он не зависит от результата предше­ствующих бросков и не влияет на результаты последующих. Сле­довательно, закон больших чисел не утверждает, что вероятность выпадения орла для отдельного броска станет выше 50%, если в первых ста или миллионе бросков только в 40% случаев выпал орел. Закон больших чисел отнюдь не обещает, что вы отыграетесь после серии проигрышей.

— 98 —
Страница: 1 ... 93949596979899100101102103 ... 291