Важнейшей отличительной особенностью всех описанных в этой главе научных достижений является смелая мысль, что неопределенность может быть измерена. Неопределенность означает, что значение вероятности неизвестно; перефразируя высказывание Ха-кинга об определенности, можно сказать, что нечто является неопределенным, если наша информация верна, а событие не происходит или если наша информация неверна, а событие происходит. Якоб Бернулли, Абрахам де Муавр и Томас Байес показали, как вычислять величину вероятности на основании эмпирических фактов. В этих достижениях впечатляют живость ума, проявленная в постановке вопросов, и смелость, с которой он дерзко атакует неизвестное. Де Муавр не скрывал восхищенного удивления перед собственными результатами, когда сослался на БОЖЕСТВЕННОЕ ПРЕДНАЧЕРТАНИЕ. Он любил такого рода выражения. В другом месте у него читаем: «Если бы мы не ослепляли себя метафизической пылью, то могли бы коротким и очевидным путем прийти к познанию великого СОЗДАТЕЛЯ и ВСЕДЕРЖИТЕЛЯ всего сущего»28. Мы уже основательно углубились в XVIII столетие, когда англичане считали познание высшей формой человеческой деятельности. Это действительно было время, когда ученые стряхнули со своих глаз метафизическую пыль. Не было больше препятствий для исследования непознанного и созидания нового. Огромные успехи в освоении природы риска, достигнутые до 1800 года, дали мощный толчок науке наступающего столетия, и в Викторианскую эпоху исследования в этом направлении получили дальнейшее развитие. Приложение Пример практического применения Байесова подхода к статистическим задачам Обратимся вновь к булавочной компании. Компания имеет две фабрики, причем старая выпускает 40% продукции. Это означает, что взятая наугад булавка, бракованная или нет, с вероятностью 40% выпущена на старой фабрике; это исходная вероятность. Известно, что на старой фабрике процент брака вдвое больше, чем на новой. Если клиент звонит и сообщает о купленной им бракованной булавке, на какую из двух фабрик должен звонить менеджер по сбыту? Исходная вероятность побуждает утверждать, что, скорее всего, бракованная булавка сделана на новой фабрике, выпускающей 60% продукции компании. С другой стороны, частота появления брака на этой фабрике вдвое меньше, чем на старой. Пересмотрев исходную вероятность с учетом этой дополнительной информации, получаем, что вероятность выпуска бракованной булавки новой фабрикой равна только 42,8%; это значит, что с вероятностью 57,2% виновата старая фабрика. Эта новая оценка становится апостериорной вероятностью. — 108 —
|