Против Богов. Укрощение риска

Страница: 1 ... 102103104105106107108109110111112 ... 291

Сопроводительное письмо Прайса Кантону показывает, как да­леко за одно столетие продвинулся анализ вероятности в практике принятия решений. «Каждый здравомыслящий человек, — пишет Прайс, — поймет, что поставленная здесь задача ни в коем случае не является простым упражнением в области теории случайностей, но требует решения в целях построения прочного основания для всех наших суждений относительно предыдущих событий и выяс­нения вероятности последующих»22. Он далее указывает, что ни Якоб Бернулли, ни де Муавр не поставили вопрос именно таким об­разом, хотя де Муавр и охарактеризовал трудности в получении своего собственного решения как «наибольшие из всех, какие мож­но ожидать в теории случайностей ».

Для доказательства своей точки зрения Байес использовал не очень подходящий для диссидентствующего священника пример — бильярд. Запущенный по бильярдному столу шар где-то останавлива­ется и остается на месте. Затем другой шар многократно запускается таким же образом, и подсчитывается число случаев, когда он оста­навливается справа от первого. Это «число случаев, когда неопреде­ленное событие наступило», — успех. Неуспех — это число случаев, когда событие не наступило, то есть шар оказался слева от первого. Вероятность местонахождения первого шара — единичное испыта­ние — следует вывести из «успеха» или «неуспеха» второго23.

Важнейшее применение подхода Байеса заключается в использо­вании новой информации для уточнения вероятности, основанной на старой информации, или, пользуясь языком статистики, сравнении апостериорной вероятности с априорной. В случае с бильярдными ша­рами положение первого шара представляет собой априорную, а мно­гократные оценки его местонахождения повторяющимися запусками второго шара — апостериорную вероятность.

Процедура пересмотра выводов относительно старой информа­ции по мере получения новой имеет источником философскую точ­ку зрения, делающую достижения Байеса чрезвычайно современ­ными: в динамичном мире в условиях неопределенности нет одно­значных ответов. Математик А. Ф. М. Смит (Smith) это очень хоро­шо сформулировал: «Каждая попытка научно обосновать ответы, возникающие в ситуации сложной неопределенности, является, на мой вкус, тоталитарной пародией на считающийся разумным про­цесс познания»24.

Хотя из-за сложности байесовского подхода детальное рассмот­рение его здесь неуместно, пример типичного применения его при­веден в конце этой главы.

— 107 —
Страница: 1 ... 102103104105106107108109110111112 ... 291