Продуктивное мышление

Страница: 1 ... 212213214215216217218219220221222 ... 227

2. Подход к доказательству. Доказательство нельзя просто навязать ребенку. В крайнем случае его можно ввести следующим образом: «Иногда мы не можем «отре­зать лишнее» или «заполнить пробел» в прямом смысле этих слов. Как же в таких случаях убедиться, что мы по­ступили правильно?» Неплохо было бы сделать рисунок, где равенство площадей не является очевидным, и ска­зать: «Как убедиться в том, что метод, которым ты поль-

Рис. 182

зовался раньше, подойдет и в этом случае?» На это ребенок может ответить: «Если эти две косые линии параллельны, то тогда можно с полным правом поступать так, как мы поступали раньше». И если ребенка затем спросить: «По­чему? Почему ты так в этом уверен?» — он может ответить: «Важно, чтобы то, что я хочу убрать с левой стороны, точ­но соответствовало тому, что находится справа». Если вы потом спросите: «Как ты можешь доказать это? Что это значит?» — вы можете получить ответ: «Нам нужно, что­бы эти два треугольника были равны». Вопрос: «Можешь ли ты доказать, что они равны, если эти линии параллель­ны?» Ответ: «Они равны, потому что их проводили так, чтобы они были равными». Вопрос: «Можешь ли ты де­тально показать, что существенно для их равенства?»

И тогда перед ребенком можно поставить проблему, как доказать конгруэнтность, или на его языке равенство, треугольников, используя равенство линий и углов.

Ребенок может в этом случае воспользоваться некото­рыми общими теоремами, которые он изучал раньше, на-

322

пример теоремой о равенстве соответственных углов. Или прийти к этим проблемам именно в данном контексте.

Мы не склонны утверждать, что ребенок должен всегда, во всех случаях искать доказательство сам. (Хотя распро­страненный аргумент, что это потребует слишком много времени, кажется мне не вполне верным, не решающим.) Нет возражений против того, чтобы учитель сам демонст­рировал все доказательство. Но в таком случае ему следу­ет делать это структурно правильным способом, чтобы способствовать действительному пониманию иерархии фаз доказательства.



ПРИЛОЖЕНИЕ 5

Уравновешивание палки

Когда вы предлагаете детям построить из кубиков Т-об­разную конструкцию, положив один из кубиков вертикаль­но и уравновешивая второй на вершине первого в горизон­тальном положении, интересно наблюдать за развитием действий испытуемых, следить за тем, как они приходят к пониманию того, что устойчивость структурно требует симметрии.

Эту же проблему предполагает задание по переносу длинных палок (выполнение которого интересно изучать и на собаках). Сначала дети экспериментируют с палкой, часто они сдаются после нескольких отрицательных проб. Но некоторые дети упорствуют, и большинство из них через некоторое время возвращается к задаче. Интересно наблюдать, как они учатся на своих ошибках. Пробы, при­водящие к отрицательным результатам, являются не про­сто негативными случаями. Конечно, иногда ребенок про­изводит слепые изменения, но очень часто мы наблюдаем, что он действует вполне осмысленно. Например, берет пал­ку левее центра, и она падает направо, в следующей по­пытке ребенок может слепо повторить действие, схватив палку в том же самом месте — или даже еще левее, — но часто дети осмысленно корректируют свои действия, они хватают ее немного правее. Они могут схватить палку не­достаточно или слишком далеко, но в следующей попытке они стараются произвести осмысленную коррекцию. Часто поведение в целом является вполне последовательным. В этом заключается основное различие между последова­тельностью случайных проб и последовательностью проб, которая обладает осмысленной структурой.

— 217 —
Страница: 1 ... 212213214215216217218219220221222 ... 227