Продуктивное мышление

Страница: 1 ... 209210211212213214215216217218219 ... 227

316

мер, на определение размера комнаты или двух столов или даже на определение кубического объема комнаты или объема трехмерной коробки, заполненной кубиками. В этой задаче внимание сосредоточивается на количестве кубиков в одном квадрате, которое нужно умножить на высоту, а не просто на умножении сторон.

6. Площадь параллелограмма. Лучше всего просто спросить: «Какова площадь этой фигуры? Можешь ли ты ее определить?» Как и в случае с прямоугольником, неко­торые дети, немного подумав и при поддержке учителя, са­ми находят решение.

Если ребенок не продвигается вперед, можно спросить; «Что тебе мешает? Почему это так трудно сделать?» На что ребенок может ответить: «Трудность связана вот с этими концами. Если бы они были такими же, как у пря­моугольника, все было бы хорошо».

6а. В некоторых случаях полезно дать следующую фигуру:

Рис. 175

Иногда дети отвечают: «О, посередине все хорошо, но...»

6б.Или: «Вот домик из кубиков с прямоугольной верх­ней частью. Мне хотелось бы сделать для него красивую крышу. Вот у меня кусочек красно-коричневого картона. Может быть, его можно использовать. Длина картона та­кая же, как и у верхней части домика, но, к сожалению, она имеет форму параллелограмма. Можешь ли ты сделать из нее крышу нужной формы?»

Возможно, лучшим приемом (поскольку здесь помощь меньше) был бы следующий: «Вот картонный параллело­грамм. Что нужно сделать, чтобы получить из него прямо­угольник?»

6в.Альтернативный прием. После того как я просто поставил задачу найти площадь параллелограмма и не до­бился результата, я кладу перед ребенком совершенно другую фигуру, у которой есть два структурных наруше­ния, одно — явно неподходящее добавление, другое — вы­емка или пустота (см. рис. 176).

317

Для некоторых детей переход от такого структурно бо­лее легкого задания к явно непохожему случаю с парал­лелограммом без дополнительной помощи оказывается трудным или непосильным. Но есть дети, которые, решив эти задачи, возвращаются к параллелограмму, улыбаются и решают задачу.

Рис. 176

6г. При необходимости я ввел бы задачу из реальной жизни: «Механик, делающий металлические плиты (пря­моугольной формы), пользуется следующим способом опре­деления количества металла, который ему понадобится для прямоугольника определенного размера. (Здесь сле­дует обучение определению площади прямоугольника.) Однажды его просят сделать плиту следующей формы.

— 214 —
Страница: 1 ... 209210211212213214215216217218219 ... 227