Вместо ответа ребенок может задать вопрос, например: «А хватит ли у фермера, у которого ферма меньше, денег, чтобы уплатить разницу?» Но в большинстве случаев можно легко поставить ребенка перед проблемой сравнения этих фигур. 2б. Если это не помогает, можно попробовать еще одну конкретную ситуацию, предполагающую более конкретную помощь. «Ты сидишь на полу с другим мальчиком, и каждый из вас строит стенку из кубиков. Ты уже использовал все свои кубики, а у другого мальчика еще целая куча неиспользованных кубиков. Тебе очень хочется построить свою стену на один кубик выше, и ты просишь у другого мальчика несколько кубиков. Он отказывается дать их тебе, и ты ему говоришь: «Мне нужно не много, у тебя очень много кубиков, которые тебе не нужны, почему ты не можешь дать мне несколько?» Тот сердито отвечает: «Сколько тебе нужно?» Ну, так сколько кубиков тебе понадобится, если ты хочешь построить стену на один или два кубика выше?» Некоторых учителей может испугать смешение трехмерных и двумерных объектов. Можно, конечно, начать с картонных квадратиков, но, по-моему, это не имеет значения, лично я предпочитаю пользоваться кубиками. 3. Как прийти к «формуле». При помощи таких заданий — и еще лучше, если только возможно, при помощи чисто абстрактных заданий — я бы постарался добиться, чтобы ребенок сам пришел к формулировке: «Мне нужен еще один ряд (или еще два ряда и т. д.). Мне нужно столь- 315 ко-то рядов, я число рядов должно быть умножено на число кубиков в одном ряду». Рис. 173 Затем я спросил бы: «Сколько маленьких квадратиков во всей этой фигуре?» (Или: «Чему равна вся площадь?») Ребенок мог бы тогда ответить: «Нужно измерить основание, нужно измерить высоту и перемножить их». 4. Здесь я позволил бы ребенку обнаружить, что можно действовать и так, и эдак независимо от того, какую сторону принять за основание. Рис. 174 Часто приятно наблюдать, как ребенок радуется, когда узнает, что возможны оба варианта. При определенных условиях обнаружение того, что аb = bа, является подлинным открытием, подобным инсайту. 5. Задачи на обсуждаемую тему. Я бы не стал продолжать вычисления на слишком большом числе других примеров этого типа, опасаясь, что ребенок может забыть структурную формулу. Вместо этого я дал бы вначале несколько интересных различных примеров. И я бы привел еще один пример, к которому описанный метод неприменим, ожидая, пока ребенок сам не сделает вывод: «Я не могу решить эту задачу тем же способом, здесь нужно сосчитать маленькие квадратики». Я бы дал задания, напри- — 213 —
|