Рис. 8.1 (а) Нормальное распределение N. Ожидается, что варианты значений прогнозируемого параметра сосредоточены около среднего значения. Значения параметра, существенно отличающиеся от среднего, т. е. находящиеся в "хвостах" распределения, имеют малую вероятность осуществления. (б) Треугольное распределение Т. Этот вид распределения можно рассматривать как некоторый суррогат нормального в тех случаях, когда известно только, что распределение симметрично и имеет одну моду, причем следует ожидать, что вероятность реализации более или менее равномерно растет по мере приближения к моде. (в) Трапециевидное распределение Тр. Предполагается, что в пределах РВД существует интервал значений с наибольшей вероятностью реализации (НВР). Например, предполагается, что в диапазоне от 10 до 30% наиболее вероятны процентные ставки в пределах 15-25%. (г) Равномерное распределение P. По мнению эксперта, все варианты прогнозируемого показателя имеют одинаковую вероятность реализации, что равносильно отсутствию каких-либо дополнительных экспертных суждений о характере явления. По-видимому, наибольшую информацию эксперт должен иметь для того, чтобы утверждать, что распределение близко к нормальному[42], и, наоборот, при полном отсутствии такой информации логично остановиться на равномерном распределении. Распределения Т и Тр занимают промежуточные места. Графическая иллюстрация перечисленных распределений приведена на рис. 8.1, на котором буквенные символы обозначают: a, b — границы РВД; М — модальное значение переменной; M1 , M2 — границы НВР. При использовании указанных распределений, кроме нормального, полагаем, что площадь под кривой распределения равна 1, или 100%. С небольшой натяжкой сказанное можно отнести и к нормальному распределению. Третьим необходимым элементом методики является доверительная вероятность (ДВ), которая характеризует уровень вероятности реализации прогноза. Например, допустим, что интервальная оценка цены продукции в рамках прогноза считается надежной, если ДВ принята на уровне 0,9. Таким образом, в 9 случаях (шансах) из 10 (иными словами, с 90%-й вероятностью) можно утверждать, что прогноз окажется оправданным. Чем больше величина ДВ, тем ближе интервальный прогноз к РВД. § 8.2. Методы определения интервальных прогнозовПосле установления РВД и выбора вида распределения и уровня ДВ расчет границ интервального прогноза становится чисто технической задачей. Ее решение заключается в отсечении "лишних" концов РВД соответственно принятой доверительной вероятности. Иначе говоря, находят величины — 93 —
|