МЕТОДИКА В. Прогноз произведения двух параметровИногда прогнозируемый показатель представляет собой произведение двух величин Y = VW , где одна величина — качественная характеристика (производительность труда, фондоотдача и т. п.), вторая — объемная величина (количество отработанного времени, размер фондов и пр.). Показатель Y прогнозируется не непосредственно, а на основе прогнозов сомножителей. Если рассматривать сомножители как независимые величины (а в большинстве случаев это правомерно), то методика сводится к следующему. 1. Для каждого сомножителя находится интервальный прогноз: V1, V2; W1,W2. При этом доверительная вероятность принимается на уровне P. Причем . Иначе говоря, прогноз сомножителей должен быть сделан с большей доверительной вероятностью, чем прогноз итогового показателя (см. табл. 8.4; в ней же приводятся соответствующие значения ).
Таблица 8.4
2. Рассчитываются граничные значения прогнозного интервала как произведения V1W1, V2W2. С вероятностью ДВ можно утверждать, что реальное значение Y будет находиться в указанных пределах. Можно применить и иной подход, взяв за базу средние распределений. Тогда последовательно находим: средние и дисперсии каждого распределения, произведение средних и дисперсию произведения. Последняя рассчитывается следующим образом[47]: , (8.15) где Dj и Mj — дисперсия и средняя.
ПРИМЕР 4 Прогнозируется произведение двух случайных переменных, РВД которых показаны ниже в таблице. Доверительная вероятность принята на уровне 80%. Таким образом, Р = 100 = 89,4% . По табл. 8.4 находим = 0,053. Применим первый из рассмотренных выше подходов. По формулам (8.6) и (8.9) определим значения х и границы прогнозных интервалов для каждого сомножителя.
Как видим, прогнозный интервал 34 — 64,4 довольно широк. Однако он уже, чем произведение граничных значений РВД (30 — 70). Для применения второго метода рассчитаем средние и дисперсии.
Для принятого уровня доверительной вероятности z = 1,28 (см. табл. 8.2). Границы прогнозного интервала составят: — 97 —
|