Финансовый анализ производственных инвестиций

Страница: 1 ... 8485868788899091929394 ... 125

Суммы погашения задолженности и величины остатка долга определяются последовательно по формулам (7.14) и (7.15).

ПРИМЕР 5

K = 100, п = 5, i = 10% годовых, ежегодный прирост платежей на 15%, k = 0,15.

Коэффициент рассрочки находится по формуле (7.18):

На момент окончания первого года получим:

R1 = 100 х 0,20089 = 20,089; D1 x i = 100 х 0,1 = 10,0; d1= 20,089 -10,0 = 10,089.

Далее последовательно находим Rt , Dt , dt . Причем Rt = 20,089 x 1,15t -1.

t

Остаток долга на конец периода

%

Погашение долга

Лизинговые платежи

1

100,000

10,000

10,089

20,089

2

89,911

8,991

14,111

23,102

3

75,800

7,580

18,987

26,567

4

56,813

5,681

24,872

30,553

5

31,941

3,194

31,941

35,135

Если предусматривается систематическое сокращение размеров платежей, например k = -15%, то R1 = 34,507.

Rt = 34,507 х (1 - 0,15)t -1.

Регулярные постоянные платежи (метод Б)

Напомним, что согласно этой схеме величина периодических лизинговых платежей определяется как сумма погашения основного долга (амортизация стоимости оборудования) и выплат процентов. Размер амортизации может быть определен с помощью различных методов (см. гл. 2 "Модели износа оборудования"). Далее рассматривается только линейная модель амортизации, поскольку этот метод является преобладающим в отечественной практике. Согласно этой модели сумма амортизационного отчисления d определяется "бухгалтерским" способом по соответствующим нормативам или иным путем. Так или иначе, но расчет выполняется по схеме погашения задолженности равными долями (суммами)[40]. При погашении всей первоначальной стоимости

при частичном возмещении стоимости

.

Платежи по лизингу в конце периода t находятся как

Rt = Dt - 1 x i + d, (7.19)

где Rt — размер лизингового платежа в периоде t.

Остаток долга на конец периода находится последовательно:

Dt = Dt - 1 - d (7.20)

или

.

ПРИМЕР 6

K = 100, n = 5, i = 10%. Платежи производятся в конце каждого года, основной долг погашается полностью равными суммами.

t

Остаток долга на конец периода

%

Погашение долга

Лизинговые платежи

1

100

10

20

30

2

80

8

20

28

3

60

6

20

26

4

40

4

20

24

5

20

2

20

22

Особенность результатов, получаемых по методу Б, состоит в том, что они уменьшаются с каждым шагом во времени (см. пример 6), что может оказаться малопривлекательным для лизингополучателя. Вместе с тем метод Б при любых схемах начисления амортизации позволяет применять переменные процентные ставки.

Сравнение регулярных лизинговых платежей для разных схем погашения задолженности

Для того чтобы продемонстрировать влияние выбора условий лизинга на распределение лизинговых платежей во времени, сопоставим платежи, рассчитанные для четырех вариантов условий. В табл. 7.1 приводятся размеры платежей постнумерандо для следующих вариантов:

— 89 —
Страница: 1 ... 8485868788899091929394 ... 125