Финансовый анализ производственных инвестиций

Страница: 1 ... 8384858687888990919293 ... 125

Dt = Dt -1- dt .

ПРИМЕР 4

K = 100, п = 5 лет, i = 10% годовых, платежи в конце периодов, полное погашение стоимости оборудования, соответственно s = 0. По формуле (7.2) получим

R = 100 х = 100 x 0,2638 = 26,38.

Табличное значение коэффициента рассрочки равно 0,263797 (см. табл. 6 (1Б) Приложения).

Если контракт предусматривает платежи в начале каждого года, то

R = 100 х = 100 x 0,23982 = 23,982.

График погашения задолженности в конце каждого года приведен ниже.

t

Остаток долга на конец периода

%

Погашение долга

Лизинговые платежи

1

100,000

10,000

16,380

26,38

2

83,620

8,362

18,018

26,38

3

65,602

6,560

19,820

26,38

4

45,782

4,578

21,802

26,38

5

23,980

2,398

23,980

26,38

Как видим, суммы, предназначенные для погашения основного долга, увеличиваются, в то время как процентные платежи сокращаются.

Если в условиях данного примера (платежи пренумерандо) предусматривается остаточная стоимость в размере 10% от первоначальной стоимости оборудования (s = 0,1), то размер лизингового платежа (выплаты постнумерандо) составит:

R = 100 х (1 - 0,1 х 1,1-5) х 0,2638 = 24,742.

В табл. 6 (3Б) Приложения находим коэффициент рассрочки а = 0, 24742.

t

Остаток долга на конец периода

%

Погашение долга

Лизинговые платежи

1

100,000

10,000

14,742

24,742

2

85,258

8,526

16,215

24,742

3

69,043

6,904

17,837

24,742

4

51,205

5,121

19,621

24,742

5

31,584

3,158

21,584

24,742

Проверка: остаточная стоимость 31,584 - 21,584 = 10,000, как и было предусмотрено в условиях.

Изменим еще одно условие. Пусть теперь платежи производятся в конце каждого месяца. Тогда

R = 100 х = 2,1247.

Годовая сумма выплат сокращается до 25,50.

Платежи с постоянным темпом изменения. Условия погашения задолженности по лизингу могут предусматривать изменение платежей с постоянным темпом прироста k в каждом периоде. Иначе говоря, задается ускоренное, а иногда и замедленное погашение долга. Соответствующие платежи представляют собой ренту с постоянным относительным приростом (см. гл. 1). Размеры платежей рассчитываются следующим образом:

Rt = R1(1 + k)t; t = 0,..., n - l. (7.17)

Темп прироста может быть положительной или отрицательной величиной. При k > 0 происходит ускорение погашения задолженности, при k < 0 сокращение размеров платежей с каждым шагом во времени.

Размер первого платежа при условии полного погашения долга определяется как

R1 = Kb,

где b — коэффициент рассрочки для принятого порядка погашения долга.

Коэффициент приведения такого рода ренты — см. (1.17). На основе этого коэффициента получим

. (7.18)

— 88 —
Страница: 1 ... 8384858687888990919293 ... 125