Продуктивное мышление

Страница: 1 ... 4041424344454647484950 ... 227

Перенос может быть и слепым. Без такого понимания можно просто слепо считать, что и площадь прямоуголь­ника определяется произведением двух его сторон. Если называть и этот случай обобщением, то следует ясно по­нимать, что существует важное различие между струк­турно слепыми, или бессмысленными, обобщениями и об­общениями осмысленными.

21. Мне могут возразить: «Почему вы говорите о по­нимании внутренней структуры, внутренних требований, подразумевая при этом, что схватывание структурных при-

63

знаков в ваших примерах делает действия осмысленными? А что вы скажете о неевклидовых ситуациях? Что если мы выберем для нашей геометрии другие аксиомы? То, что разумно в одной системе, может быть бессмысленным в другой. То, что вы говорите, может показаться разум­ным только тем, кто разделяет наивную старомодную веру в важность только евклидовых аксиом».

Это возражение несостоятельно: оно не затрагивает существа вопроса. Неевклидова геометрия обладает свои­ми собственными структурными признаками, но и в но­вом, более широком контексте сохраняют силу требования осмысленности. После введения признака пространствен­ной кривизны некоторые утверждения евклидовой гео­метрии оказываются непригодными, так как они не учи­тывают условий, появляющихся с введением кривизны, и соответствуют только частному случаю, при котором кривизна равна нулю.

Коротко проиллюстрируем сказанное: фигура, состоя­щая из четырех «прямых» линий и четырех прямых углов на поверхности сферы, отличается от плоского прямоуголь­ника также и площадью, но и в этом случае вы можете либо осмысленно определить эту площадь, поняв ее внут­реннюю структуру, либо получать результаты диким ме­тодом, аналогичным уже рассмотренным нами случаям.

«Почему вы в этом контексте говорите о разумности?— спросит логик. — Разумность — это не что иное, как тре­бование непротиворечивости в смысле старой формальной логики. Любая теорема, любой закон — даже ваш пример площади прямоугольника, равной в описанном вами ис­кусственном мире 2 (а+b),— являются нелепыми или неразумными только потому, что они противоречат другим законам и не согласуются с аксиомами собственной систе­мы. Вот и все».

Но этот аргумент просто переносит вопрос с теорем на аксиомы. Если рассмотреть другие аксиомы, соответствую­щие именно таким структурно слепым связям и обеспе­чивающие формальную непротиворечивость, то в резуль­тате окажутся дикими не только отдельные теоремы, но и вся аксиоматическая система.

— 45 —
Страница: 1 ... 4041424344454647484950 ... 227