Продуктивное мышление

Страница: 1 ... 4243444546474849505152 ... 227

Более того, то, что мы склонны считать само собой

65

разумеющимся и «очевидным», нуждается в научном осве­щении и разработке. Здесь я использовал термины, кото­рые кажутся непривычными и недостаточно простыми. Следует, однако, понять, что сама ситуация таит в себе множество проблем. И в этом нет ничего странного. В то время как в традиционной логике существует множество хорошо разработанных операций, операции, с которыми имеем дело мы, все еще плохо изучены. Гештальттеория только пытается их разработать.

23. «Вы не упомянули, — вмешивается логик, — еще одно обстоятельство, достаточное для различения дейст­вий, которые вы называете дикими, и действий разумных. Эти примеры кажутся бессмысленными просто потому, что состоят из большего числа шагов, являются более длин­ными. Вы забыли о „lex parsimoniae"».

Все предыдущие решения действительно содержали большее число шагов, чем соответствующие разумные ре­шения. Но этот внешний признак не должен вводить вас в заблуждение. Он не имеет существенного значения.

Всегда ли такие «мудреные» действия необходимо со­держат большее число шагов? Всегда ли они «сложнее» соответствующих осмысленных действий? Нет. В задачах на определение площади прямоугольника и параллело­грамма осмысленные действия структурно слишком прос­ты, чтобы допустить применение более короткого метода, но в учебниках по математике можно обнаружить такие случаи. Рассмотрим, например, следующую задачу.

Какова сумма ряда:

S=l+a+a2+a3+a4...? (a<1)

Вот обычное решение:

  1. Напишите равенство 1. S = 1+а+a2+а3+а4+...
  1. Умножьте обе части 2. aS=a+a2+a3+a4+a5...
    равенства на а
  2. Вычтите из первого ра- 3. SaS= 1

венства второе

  1. Найдите S

Вот правильный результат:

он корректно получен, дока­зан и весьма элегантен из-за своей краткости. Действи­тельное понимание, разумный вывод формулы отнюдь не просты; для этого требуется гораздо большее число нелег­ких шагов. Хотя многие и вынуждены признать коррект-

66

ность описанных выше действий, они не испытывают чув­ства удовлетворения и чувствуют себя обманутыми. Умно­жение на а, а затем вычитание одного ряда из другого дает решение, но не приводит к пониманию того, как бес­конечный ряд (точнее, последовательность его частичных сумм) приближается в процессе роста к своему предель­ному значению1. Подлинное понимание исходит из рас­смотрения роста ряда и приводит к закону роста, что по­зволяет найти предел. Многие в действительности не до­стигают понимания. Они удовлетворяются получением правильного ответа2.

— 47 —
Страница: 1 ... 4243444546474849505152 ... 227