26.— Мне в голову пришел еще один вопрос,— сказал Мак-Каллох.— Существует ли такое число X, которое порождает повторение числа Х67? Или, в более общем виде: действительно ли для любого числа А существует такое число X, которое порождает повторение числа ХА? Или, если задать вопрос в еще более общем виде: действительно ли для любого числа А и для любого операционного числа М должно существовать некоторое число X, которое порождает м(ХА)? Обсуждение. Принцип Крейга справедлив не только для второй машины Мак-Каллоха, но и для первой — а в сущности и для любой машины, в которую заложены правила 1 и 2. Это означает, что, как бы мы ни расширяли первую машину Мак-Каллоха, вводя в нее новые правила, работа результирующего устройства все равно будет подчиняться принципу Крейга (а фактически обоим его принципам). Первый принцип Крейга связан с одним из знаменитых результатов теории вычислимых функций, известным под названием теоремы о рекурсии (или, как ее иногда называют, теоремы о неподвижной точке). С помощью правил 1 и 2, предложенных Мак-Каллохом, Стр. 136 этот результат получается, пожалуй, наиболее простым способом. Кроме того, эти правила обладают еще одним занятным свойством (связанным уже с другим знаменитым результатом теории вычислимых функций, известным под названием теоремы о двойной рекурсии), о котором пойдет речь в следующей главе. Наконец, все эти сведения имеют отношение к теории самовоспроизводящихся машин и теории клонирования. Решени 1.— С помощью твоей теперешней машины можно получить бесконечное множество чисел, которые порождают сами себя,— сказал Крейг. —Это верно, —согласился Мак-Каллох.— Но как ты это докажешь? —Начнем с того,— сказал Крейг,— что будем называть некое число SA числом, если оно обладает тем свойством, что для любых чисел X и У в случае, если X порождает V, число SX порождает ассоциат У. До того как ты ввел свое новое правило, единственным А-числом у нас было число 3. Однако для твоей нынешней машины существует бесконечное множество А-чисел, причем для любого А-числа S число S2S обязательно должно порождать само себя, поскольку число S2S порождает ассоциат числа S, который и есть S2S. А как ты догадался, что существует бесконечное множество А-чисел? — спросил Мак-Каллох. Ну, во-первых,— ответил Крейг,— надеюсь, ты не будешь возражать, что при любых числах X и У, если число X порождает У, то число 44Х будет также порождать У? — Удачное наблюдение! — воскликнул Мак-Каллох.— Конечно, ты прав: ведь если X порождает У, то число 4Х порождает обращение числа У, а значит, число 44 X должно порождать обращение обращения У—то есть само это число У. — 83 —
|