Принцесса или тигр?

Страница: 1 ... 109110111112113114115116117118119 ... 138

2. В системе Фергюссона при любом заданном числе n множество а3n+i представляет собой множество An*. Поэтому множество A301 — это есть множество A Воспользуемся теперь результатом предыдущей задачи, положив b равным 301. Тогда утверждение 301ЄА301 будет гёделевым утверждением для множества Аb. Вообще для любого числа л, выбрав d=3n+1, мы получим, что утверждение bЄAb, является гёделевым для множества Ab в системе Фергюссона.

3. Да. Предположим, что данная система является гёделевой и что условия g1 и G2 выполняются; предположим также, что система правильна. Согласно условию gi, множество Р именуемо в этой системе; поэтому, согласно условию G1, именуемо также и множество Р—дополнение Р. Тогда, поскольку исходная система гёделева, то существует гёделево утверждение X для Р. Это означает, что X истинно в том и только том случае, если гёделев номер утверждения X принадлежит Р. Однако если гёделев номер утверждения X принадлежит Р, то тем самым он не принадлежит Р, а это значит, что утверждение X недоказуемо. Таким образом, гёделево утверждение для Р—это ни больше ни меньше как утверждение, которое истинно в

Стр. 184

том и только том случае, если оно недоказуемо в (данной системе, а такое утверждение (как мы уже видели) как раз и должно быть истинным, но недоказуемым в этой системе (если система правильна).

Итак, фактически суть доказательства Гёделя состоит в построении гёделева утверждения для множества Р.

4. Очевидно, что всякое утверждение X является гёделевым утверждением для множества Т, потому что если X истинно, то его гёделев номер принадлежит Т, а если оно ложно, то его гёделев номер не принадлежит Т. (cследовательно, ни одно утверждение не может оказаться гёделевым для Т, потому что не может существовать ни истинного утверждения Х, гёделев номер которого принадлежал бы множеству Т, ни ложного утверждения X, гёделев номер которого не принадлежал бы множеству Т.

Читателю будет поучительно убедиться, что для любого множества чисел А и для любого утверждения X это X может являться гёделевым утверждением либо для А, либо для А, но никак не для обоих множеств сразу.

5. Рассмотрим сначала произвольную систему, удовлетворяющую условию G3. В соответствии с решением задачи 1 для любого множества, именуемого в рамках данной системы, существует гёделево утверждение. Кроме того, согласно решению задачи 4 не существует гёделева утверждения для множества Т. Следовательно, если система удовлетворяет условию G3, то множество Т не допускает имени в этой системе. Если система удовлетворяет к тому же условию g3, то множество Т не именуемо в этой системе — потому что ли бы это было так, то тогда, согласно условию G3, допускало бы имя и его дополнение Т, что на самом деле не имеет места. Это доказывает, что в системе, удовлетворяющей условиям G2 и G3, множество Т не именуемо.

— 114 —
Страница: 1 ... 109110111112113114115116117118119 ... 138