Стр. 182 а. Показать, что существует такое утверждение, которое нельзя ни доказать, ни опровергнуть в данной системе . б. Рассмотрим следующий частный случай: пусть нам дано, что а10—это множество R и что для любого числа n множество А5n представляет собой множество (таких чисел х, для которых число х*х принадлежит Аn (здесь мы имеем частный случай условия G3). Задача теперь состоит в том, чтобы найти утверждение, которое было бы и недоказуемым, и неопровержимым и данной системе, а также определить, является ли это утверждение истинным или ложным. Примечания. 1. Гёлелев метод получения неразрешимого утверждения сводится к построению гёделева утверждения для множества Р—дополнения Р; такое утверждение (его можно рассматривать как высказывание, утверждающее собственную недоказуемость) должно быть истинным, но недоказуемым в данной системе. Двойственный метод сводится к построению гёделева утверждения не для множества Р, а для множества R; такое утверждение (его можно рассматривать как высказывание, утверждающее собственную опровержимость) должно быть ложным, но неопровержимым. (Поскольку оно ложно, оно так же недоказуемо и, следовательно, неразрешимо в данной системе.) Следует отметить, что те системы, которые рассматриваются в оригинальной работе Гёделя, удовлетворяют всем четырем условиям — G1, G2, G3 и G1', так что для построения неразрешимых утверждений можно использовать как тот, как и другой метод. 2. Высказывание, которое утверждает собственную недоказуемость, можно сравнить со словами того обитателя острова рыцарей и плутов, который заявляет, будто он непризнанный рыцарь, точно гак же высказывание, утверждающее свою собственную опровержимость, можно уподобить словам такого обитателя острова, который шявляет, что он отъявленный плут; этот человек и в самом деле мошенник, но неотъявленный. (Предоставляю читателю возможность доказать это самому.) Решени 1. Предположим, система действительно удовлетворяет условию G3. Пусть S—любое множество, именуемое в данной системе. Тогда, согласно условию G3, множество S* тоже именуемо в этой системе. Значит, существует такое число b, для которого Аb = 8*. Далее, число х принадлежит множеству S* только в том случае, если число х*х принадлежит множеству S. Стр. 183 Поэтому х принадлежит множеству Аb только в том случае, если х*х принадлежит S. В частности, если в качестве х выбрать число b, то это число принадлежит; множеству Ab, только в том случае, если число b* принадлежит множеству S. Кроме того, число b принадлежит Ab в том и только том случае, если утверждение bЄАb истинно. Поэтому утверждение bЄАb истинно тогда и только тогда, когда b*b принадлежит множеству S. Но число b*b есть гёделев номер утверждения bЄAb. Следовательно, мы имеем, что утверждение bЄAb будет истинным тогда и только тогда, когда гёделев номер этого утверждения принадлежит множеству S. Итак, если утверждение bЄA истинно, то его гёделев номер принадлежит S; если ж это утверждение ложно, то его гёделев номер принадлежит S. Таким образом, утверждение bЄA является гёделевым утверждением для S. — 113 —
|