Теорема Т. Для любой заданной системы, удовлетворяющей условиям G 2 и G3, множество Т гёделевых номеров истинных утверждений не именуемо в данной системе. Примечание. Иногда слово «именуемо» заменяется словом определимо», в результате чего теорему Т формулируют так: для достаточно богатой системы истинность в ее рамках не определима в пой системе. 5. Докажите теорему Т. 6. Следует отметить, что, доказав теорему Т, мы сразу и в качестве непосредственного следствия получаем теорему G. Может ли читатель сообразить, как это сделать? Двойственная форма доказательства Гёдел Те системы, которые, как доказал Гёдель, являются неполными, обладают также следующим свойством: с Стр. 181 каждым утверждением X связано утверждение X', о называется отрицанием X, которое истинно в том только том случае, если утверждение X ложно. Дале, если X'—отрицание некоего утверждения X—доказуемо в данной системе, то само утверждение X называется опровержимым в данной системе. Если предположить, что система правильна, то ни одно ложно, утверждение в этой системе не будет доказуемо и ни одно истинное утверждение не будет в ней опровержимо. Ранее мы убедились, что условия G1, G2 и G3 влекут за собой существование некоего гёделева утверждения, или высказывания, G для множества , также что такое утверждение G является истинным, не. недоказуемым в данной системе (предполагая, конечно, что система правильна). Но поскольку G истинно, оно не может быть опровержимым в этой системе (опять, же в предположении правильности системы). Значит утверждение G в данной системе и не доказуемо, и неопровержимо. (Такое утверждение называется неразрешимым в данной системе.) В своей монографии «Теория формальных систем» (I960 г.) я рассматривал «двойственную» форму доказательства Гёделя, а именно: что будет, если вместо высказывания, утверждающего свою недоказуемость, построить высказывание, утверждающее свою опровержимость? Более строго эту проблему можно сформулировать так. Пусть R—множество гёделевых номеров опровержимых утверждений. Предположим, что X— гёделево утверждение для R. Что можно сказать о свойствах утверждения X? Высказанная здесь идея развивается нами в следующей задаче. 7. Рассмотрим теперь правильную систему, которая удовлетворяет условию G3, а вместо условий G1 G2 потребуем выполнения следующего условия. Условие G1'. Множество R именуемо в данной системе. (Таким образом, мы предполагаем, что система правильна и удовлетворяет условиям g'1 и Gз.) * Смальян Р. Теория формальных систем. Пер. с англ.— М.: Наука, 1981. — 112 —
|