Финансовый анализ производственных инвестиций

Страница: 1 ... 8182838485868788899091 ... 125

для выплат постнумерандо

K = (k - 1)Rv + Ran-k+1;i

и для платежей пренумерандо

K = (k - 1)R + Ran-k+1;i (1+ i).

На основе этих равенств легко найти необходимые значения лизинговых платежей, а именно

, (7.6)

. (7.7)

Теперь примем во внимание выплату аванса. Для лизинговых платежей постнумерандо и пренумерандо соответственно получим

K = A + Ran;i , K = A + Ran;i (1+ i),

откуда

R = (K - A)a, (7.8)

где коэффициент рассрочки а определяется по (7.4) и (7.5).

Если лизинговый контракт предусматривает выкуп имущества по остаточной стоимости, доля которой в стоимости имущества равна s, то получим следующее уравнение эквивалентности обязательств:

K(1 - svn) = Ran;i .

Аналогично для выплат пренумерандо находим

K(1 - svn) = Ran;i(1+ i).

Лизинговые платежи возмещают здесь стоимость оборудования за вычетом дисконтированной остаточной стоимости. Для расчета суммы платежа применяется формула

R = K(1 - svn)a, (7.9)

где vn — дисконтный множитель по ставке i.

Закончим обсуждение метода расчета суммы платежа вариантом, в котором одновременно учитываются авансовый платеж и выкуп имущества. В этом случае для последовательностей платежей постнумерандо и пренумерандо имеем

K(1 - svn) = А + Ran;i ; K(1 - svn) = A + Ran;i (1 + i).

Соответственно получим

R = [K(1 - svn) - A] x a. (7.10)

ПРИМЕР 1

В § 7.2 приведены различные варианты условий лизинга. Рассчитаем для них значения лизинговых платежей, используя приведенные выше формулы.

Общие исходные данные: K = 1000, п = 36 месяцам, i = 2% в месяц.

Вариант 1. Находим по (7.4) коэффициент рассрочки (платежи в конце периодов) и затем размер ежемесячного платежа:

а = = 0,039233, R = 1000 x 0,03923 = 39,23,

Если платежи вносятся в начале каждого месяца, то, согласно (7.5):

а = 0,039233 х 1,02-1 = 0,038464 и R = 38,46.

Вариант 2. Удвоенный взнос в первом месяце (k = 2). Для взносов в конце периодов получим по (7.6):

R = = 38,49 и первый взнос 2R = 76,98.

Вариант 3. А = 100. На основе (7.8) находим R = 900 x 0,03923 = 35,31.

Вариант 4. s = 0,2. Таким образом, Ks = 1000 x 0,2 = 200 и согласно (7.9) получим

R = 1000(1 - 0,2 х 1,02-36) х 0,03923 = 35,39 .

Вариант 5. А = 100, s = 0,2. По формуле (7.10) находим R = [1000 х (1 - 0,2 х 1,02-36) - 100] х 0,03923 = 31,46.

Постоянные платежи (простые проценты). Обсуждая методы расчета лизинговых платежей, нельзя хотя бы кратко не остановиться на возможности применения в расчетах простых процентов. Такая практика существует. Согласно этому методу проценты за лизинг начисляются на первоначальную стоимость оборудования сразу за весь срок лизинга. Ограничимся наиболее простым видом лизинга (см. вариант 1 в § 7.2). Погашению здесь подлежит сумма с начисленными вперед процентами, а именно

— 86 —
Страница: 1 ... 8182838485868788899091 ... 125