Рис. 6.6 На основе формул (5.1) и (5.2) находим следующую зависимость: N = R(an;i - аn;J). (6.18) Здесь i — ставка, которая применяется при определении чистого приведенного дохода N. Величина N оказывается положительной, если i < J. Графическая иллюстрация данной зависимости представлена на рис. 6.6. Зависимость внутренней нормы доходности и дисконтированного срока окупаемости определяется следующим образом (см. § 6.9): . (6.19) С повышением срока окупаемости внутренняя норма доходности сокращается. График этой зависимости представлен на рис. 6.7. Зависимость внутренней нормы доходности и индекса доходности получим на основе формул (5.2) и (5.4): . (6.20) Рис. 6.7 Графическая иллюстрация данного соотношения показана на рис. 6.8. Как следует из формулы (6.20), при J = 0 имеем U = 0, при J = i имеем U = 1; наконец, если J > i, то U > 1. Рис. 6.8 Последняя зависимость этой группы — индекс доходности и срок окупаемости. На основе (5.3) и (5.4) имеем . (6.21) График зависимости представлен на рис. 6.9. Рис. 6.9 Остановимся теперь на некоторых соотношениях показателей второй группы. Найдем соотношения рентабельности с индексом доходности, дисконтированным сроком окупаемости и внутренней нормой доходности. ; ; . Две первые зависимости иллюстрируются на рис. 6.10. Рентабельность прямо пропорциональна индексу доходности. Коэффициент пропорциональности больше единицы и зависит от размера ставки i. Напомним, что при i = 0 an;i = n. Рассмотрим соотношения срока окупаемости и дисконтированных показателей эффективности (зависимость т и пOK была показана выше, см. (6.12)). Получим: ; т = an;J . Срок окупаемости обратно пропорционален индексу доходности и равен коэффициенту приведения ренты, рассчитанному по внутренней норме доходности. Графики соответствующих зависимостей см. на рис. 6.11. Рис. 6.10 Приведенные соотношения получены для частного случая, когда капиталовложения мгновенны, а отдача от них представляет собой ограниченную постоянную ренту постнумерандо. В действительности поток доходов далеко не всегда следует указанной закономерности, отклоняясь от нее в ту или иную сторону. В силу этого найденные строгие зависимости "размываются". Рис. 6.11 § 6.5. Сравнение результатов оценки эффективностиПрименяемые при сравнении нескольких инвестиционных проектов показатели часто дают разные результаты по их предпочтительности. Нельзя забывать и то, что дисконтные показатели эффективности (кроме J) зависят от принятой в расчетах процентной ставки. Неоднозначность получаемых при оценивании проектов результатов объясняет, почему многие инвесторы для повышения надежности выбора применяют несколько критериев (об этом см. гл. 5). Для того чтобы сказанное было более наглядным, приведем следующую иллюстрацию. Сравним по шести критериям шесть инвестиционных проектов (табл. 6.2). Два первых одинаковы по общей сумме капиталовложений и отдач, но их распределения во времени имеют существенные различия. Проект В отличается от Б только тремя дополнительными годами поступления дохода. Аналогичное распределение поступлений и у варианта Д. Однако начало поступлений дохода здесь запаздывает на один год. Наконец, вариант Г отличается от Б тем, что на восьмом году реализации проекта предусматривается модернизация производства (в связи с этим расходы превышают доходы) с последующим увеличением срока поступлений дохода. — 72 —
|