J' = = 28,14%. Проверка: N = 13,9. Оценка размера внутренней нормы доходности оказалась заниженной. Уточним ее. Для этого несколько сузим интервал значений ставки. Воспользуемся уже полученными значениями N: для ставки 28,14% N = 13,9, а для ставки 35% N =13,25. По интерполяционной формуле получим J' = 31,59% . Проверка: N = -1,59, т. е. расчетное значение близко к нулю. Точность оценки заметно повысилась. Более "серьезные" методы определения J основываются на различных итерационных процедурах, к которым, в частности, относятся метод Ньютона—Рафсона и метод секущей[30] или какие-либо численные процедуры, например метод поразрядного приближения. В случае, когда инвестиции "мгновенны", а поток доходов может быть представлен в виде постоянной ренты, задача упрощается и сводится к определению ставки J на основе знакомого нам равенства: K = Ran;J . (6.3) Из этой формулы следует (6.4) Таким образом, задача заключается в расчете искомой ставки по заданному коэффициенту приведения постоянной ренты (см. гл. 1).
ПРИМЕР 3 Инвестиции к началу срока отдачи от них составили 4 млрд. руб. Доход ожидается на уровне 0,7 млрд. руб. в год, поступления в течение 10 лет. Если полагать, что поступления происходят равномерно в пределах года (соответственно их можно приурочить к серединам соответствующих лет), то коэффициент приведения ренты, необходимый для определения искомой нормы, можно записать следующим образом: а10;J(1 + J)0,5 = = 5,7143, что соответствует J = 13,1%. В свою очередь, если поток доходов непрерывен и постоянен, то непрерывная внутренняя норма доходности D находится на основе коэффициента приведения непрерывной ренты: (6.5) Влияние факторов. На величину внутренней нормы доходности влияют те же факторы, что и на чистый приведенный доход, а именно размеры инвестиционных расходов и доходов и специфика их распределений во времени. Однако влияние здесь обратное: все, что увеличивает N, сокращает значение J. В частном случае, когда инвестиции мгновенны, а доходы можно представить в виде постоянной ренты, зависимость нормы доходности от факторов обретает конкретный вид (рис 6.3). В том случае, когда K/R = п , внутренняя норма доходности равна нулю (точка а на рис. 6.3). Соотношение инвестиций и годового дохода оказывается эффективным только тогда, когда оно меньше величины b. Рис. 6.3 Зависимость внутренней нормы доходности от продолжительности поступлений дохода очевидна: чем она больше, тем выше эта норма при всех прочих равных условиях. Однако ее прирост затухает по мере увеличения п. — 66 —
|