Финансовый анализ производственных инвестиций

Страница: 1 ... 6061626364656667686970 ... 125

Рис. 6.1

В редких, но теоретически возможных случаях чистый приведенный доход оказывается положительной величиной при любом значении ставки i (см. рис. 6.1). Величина J здесь просто отсутствует. Если имеется множественность значений J или оно отсутствует, то при сравнении нескольких инвестиционных проектов следует воспользоваться другими измерителями эффективности.

Расчет искомой ставки осуществляется различными методами, дающими разные по точности ответы. Различаются они и по трудоемкости. В западной учебной литературе часто ограничиваются методом последовательного подбора значения ставки до выполнения условия N = 0. Действительно, при наличии опыта и сравнительно коротком потоке платежей такой подход довольно быстро дает удовлетворительные результаты.

ПРИМЕР 1

Рассчитаем J для данных примера 1 (вариант А) (см. § 5.2). Напишем уравнение, в котором для сокращения записи примем 1 + J = r . Исходная функция, определяющая чистый приведенный доход,

N(r) = -100r -1 - 150r -2 + 50r -3 + 150r -4 + 200r -5 + 200r -6 = 0 .

Решение заключается в определении корня шестой степени. Применим метод последовательного подбора. Возьмем в качестве исходной ставку, равную, допустим, 15%. Найдем величину чистого приведенного дохода по этой ставке: N(1,15) = 104,2, т.е. заметно отличается от нуля. Принятое значение ставки мало.

Изменяя величину ставки в нужном направлении, приближаемся к условию N(r) = 0. Повысим r до уровня, допустим, 1,25. Имеем N(1,25) = 29,0. Ноль в значении функции опять не достигнут.

Далее находим N(1,3) = 4,9 . Можно окончить расчет и удовлетвориться достигнутой точностью или продолжить его и еще раз увеличить ставку, например до 31%. В этом случае N(1,31) = 0,8 . Увеличивать точность расчета далее, вероятно, не имеет смысла.

Можно применить и линейную интерполяцию, если из прошлого опыта известен примерный диапазон значений для J. На рис. 6.2 приведен график, на основе которого легко получить интерполяционную формулу следующего вида:

(6.2)

где i1, i2 — границы диапазона для ставки J;

N1, N2 величины чистого приведенного дохода при дисконтировании по ставкам i1, i2.

На рис. 6.2 точное значение внутренней нормы доходности равно J. Расчетная ее оценка составляет J'. Очевидно, что чем уже интервал ставок i1 - i2, тем меньше погрешность этой оценки.

Рис. 6.2

ПРИМЕР 2

Ожидается, что внутренняя норма доходности для потока платежей примера 1 находится в интервале 25 — 35%.

Находим N1 = 29,0; N2 = 13,25 (знак минус не принимаем во внимание). В итоге

— 65 —
Страница: 1 ... 6061626364656667686970 ... 125