Психология и культура

Страница: 1 ... 193194195196197198199200201202203 ... 603

Кроме измерений, геометрии и арифметики бытовая математика может вклю­чать и другие области, что иллюстрируют исследования Шлиманна и его сотруд­ников (Schliemann, 1988; Schliemann & Acioly, 1989) по использованию понятий «перестановка» и «вероятность» букмекерами в Бразилии.

Далее мы поговорим о различиях между школьной математикой и вычислени­ями в быту, а также об общей характеристике и сильных и слабых сторонах мате­матического знания, приобретенного в конкретных бытовых ситуациях. Более под­робное рассмотрение этих вопросов можно найти в работах Шлиманна и Д. Кар-рахера (Schliemann, 1995; D.W. Carraher & Schliemann, в печати).

Сильные и слабые стороны бытовой математики

Сравнение математических способностей уличных торговцев в различных ситуа­циях показывает, что, правильно решая математические задачи в процессе своей работы, они не справляются с ними в школьной или похожей на школьную обста­новке. Т. Каррахер, Каррахер и Шлиманн (Т. N. Carraher, Carraher & Schliemann, 1987) считают, что различия в выполнении задач в разных ситуациях можно объяс­нить использованием разных процедур. На работе или в рабочей ситуации пред­почтительной является методика устного счета, которая часто ведет к получению правильного ответа. В школе и в обстановке, подобной школьной, предпочитают­ся письменные операции, которые часто ведут к неправильному результату. Эти Данные говорят о том, что качество и результативность математического мышле­ния связаны с природой используемых представлений.

Очевидно, что уличные торговцы развили у себя базовые логические способно­сти, необходимые для.решения арифметических задач в процессе работы; пробле-

мы со школьной арифметикой, по-видимому, связаны с владением особой симво­лической системой, принятой в школах. Школьный алгоритм, уделяя первоочеред­ное внимание фиксированным операциям с числами при решении любой задачи, забывает о цели. Устные же методы счета, напротив, в процессе решения задач ори­ентированы на цель, что позволяет избежать бессмысленных ошибок.

Анализ общих характеристик математического знания, сформированного в об­становке повседневной жизни, последовательно свидетельствует о том, что цель и смысл являются наиболее важными и насущными моментами при решении повсе­дневных задач. Более того, методы повседневных расчетов могут быть достаточно гибкими и восприниматься как составная часть общей логико-математической структуры, пригодной для решения задач в различных ситуациях, как было показа­но Шлиманном и Нунесом (Schliemann & Nunes, 1990) в исследовании вычислений рыбаков в северо-восточной Бразилии. Шлиманн и его коллеги (Schliemann & Magalhaes, 1990; см. также Schliemann & Carraher, 1992) приводят дополнительные свидетельства применимости повседневных методик для решения задач на пропор­циональность, которые были получены при исследовании поварих, участвовавших в программе обучения взрослых чтению и письму.

— 198 —
Страница: 1 ... 193194195196197198199200201202203 ... 603