Психология и культура

Страница: 1 ... 194195196197198199200201202203204 ... 603

По-видимому, бытовое знание имеет достаточно общий характер, чтобы позво­лить решать совершенно новые задачи с помощью стратегий, выработанных в конк­ретных повседневных ситуациях. И все же встает вопрос о границах повседневной математики, особенно если сравнить, насколько шире диапазон математических задач, решаемых в школе, по сравнению с кругом математических проблем в быту. Было бы заблуждением полагать, что повседневное математическое знание может в каком бы то ни было отношении конкурировать с профессиональным подходом к математике. Принимая во внимание имеющиеся данные исследований, мы должны признать ограниченность бытовой математики. Судя по всему, одни и те же куль­турные и социальные условия и способствуют формированию математического зна­ния у детей и взрослых, и фактически сдерживают и ограничивают его, когда оно достигает определенного уровня. Знание переместительного закона умножения яв­ляется хорошим тому примером. Петитто и Гинзбург (Petitto & Ginsburg, 1982) обна­ружили, что необразованные портные и торговцы тканями народности диоула в Ли­берии решают задачу, требующую 100 умножить на 6, шесть раз складывая 100, не понимая, что тот же самый результат они получат в результате умножения 6 на 100. Шлиманн с коллегами (Schliemann, Araujo, Cassunde, Macedo & Niceas, 1994) получи­ли подобные данные, исследуя в Бразилии молодых уличных торговцев, не имею­щих достаточного уровня образования. Испытуемые производили расчет цены мно­жества предметов, зная цену одного из них, повторяя операцию сложения в соответ­ствии с количеством единиц товара. Когда использование переместительного закона давало возможность упростить процесс вычислений (например, нужно вычислить цену 50 единиц товара стоимостью по 3 доллара за штуку), они не понимали, что можно получить общую сумму, складывая количество единиц товара столько раз, сколько денежных единиц в цене товара. Более того, по сравнению со школьниками, которых обучали умножению, уличные торговцы признавали возможность исполь­зования переместительного закона при умножении лишь в более старшем возрасте.

Другой недостаток связан с использованием скалярного, а не функционального подхода при решении задач на пропорциональное соотношение. Уличные торговцы при необходимости вычислить цену заданного количества единиц товара при извест­ной цене нескольких единиц, используют метод, который Верно (Vergnaud, 1988) назвал скалярным подходом к решению задач на пропорциональность, требующим вычисления отсутствующего значения. При таком подходе каждая из переменных понимается как независимая от другой, и с обеими переменными производятся параллельные преобразования, в процессе которых сохраняется соотношение меж­ду ними. При функциональном подходе, который проходят в школе, первоочеред­ное внимание уделяется коэффициенту соотношения двух исходных значений двух переменных, который затем используется применительно к результирующей паре, в результате чего вычисляется недостающее значение. Использование ис­ключительно скалярного подхода может создать определенные проблемы для уличных торговцев при решении задач, в которых соотношение между ценой и количеством предметов (функциональное соотношение) вычислить проще, чем соотношение между исходной и искомой величиной (скалярное соотношение). В то время как школьники чаще используют функциональное соотношение, улич­ные торговцы продолжают пользоваться скалярным методом, даже когда он тре­бует громоздких вычислений (Schliemann & Carraher, 1992).

— 199 —
Страница: 1 ... 194195196197198199200201202203204 ... 603