По-видимому, бытовое знание имеет достаточно общий характер, чтобы позволить решать совершенно новые задачи с помощью стратегий, выработанных в конкретных повседневных ситуациях. И все же встает вопрос о границах повседневной математики, особенно если сравнить, насколько шире диапазон математических задач, решаемых в школе, по сравнению с кругом математических проблем в быту. Было бы заблуждением полагать, что повседневное математическое знание может в каком бы то ни было отношении конкурировать с профессиональным подходом к математике. Принимая во внимание имеющиеся данные исследований, мы должны признать ограниченность бытовой математики. Судя по всему, одни и те же культурные и социальные условия и способствуют формированию математического знания у детей и взрослых, и фактически сдерживают и ограничивают его, когда оно достигает определенного уровня. Знание переместительного закона умножения является хорошим тому примером. Петитто и Гинзбург (Petitto & Ginsburg, 1982) обнаружили, что необразованные портные и торговцы тканями народности диоула в Либерии решают задачу, требующую 100 умножить на 6, шесть раз складывая 100, не понимая, что тот же самый результат они получат в результате умножения 6 на 100. Шлиманн с коллегами (Schliemann, Araujo, Cassunde, Macedo & Niceas, 1994) получили подобные данные, исследуя в Бразилии молодых уличных торговцев, не имеющих достаточного уровня образования. Испытуемые производили расчет цены множества предметов, зная цену одного из них, повторяя операцию сложения в соответствии с количеством единиц товара. Когда использование переместительного закона давало возможность упростить процесс вычислений (например, нужно вычислить цену 50 единиц товара стоимостью по 3 доллара за штуку), они не понимали, что можно получить общую сумму, складывая количество единиц товара столько раз, сколько денежных единиц в цене товара. Более того, по сравнению со школьниками, которых обучали умножению, уличные торговцы признавали возможность использования переместительного закона при умножении лишь в более старшем возрасте. Другой недостаток связан с использованием скалярного, а не функционального подхода при решении задач на пропорциональное соотношение. Уличные торговцы при необходимости вычислить цену заданного количества единиц товара при известной цене нескольких единиц, используют метод, который Верно (Vergnaud, 1988) назвал скалярным подходом к решению задач на пропорциональность, требующим вычисления отсутствующего значения. При таком подходе каждая из переменных понимается как независимая от другой, и с обеими переменными производятся параллельные преобразования, в процессе которых сохраняется соотношение между ними. При функциональном подходе, который проходят в школе, первоочередное внимание уделяется коэффициенту соотношения двух исходных значений двух переменных, который затем используется применительно к результирующей паре, в результате чего вычисляется недостающее значение. Использование исключительно скалярного подхода может создать определенные проблемы для уличных торговцев при решении задач, в которых соотношение между ценой и количеством предметов (функциональное соотношение) вычислить проще, чем соотношение между исходной и искомой величиной (скалярное соотношение). В то время как школьники чаще используют функциональное соотношение, уличные торговцы продолжают пользоваться скалярным методом, даже когда он требует громоздких вычислений (Schliemann & Carraher, 1992). — 199 —
|