В реальности фанатики бейсбола, как и брокеры фондовой биржи, собирают массу статистических данных, потому что эта информация необходима им для оценки класса игроков и команд или для оценки будущей прибыльности акций. И даже заключения экспертов с вероятностными оценками конечных результатов, полученные на основе обработки тысяч фактов, и в спорте и в финансах оставляют место сомнениям и неопределенности. Треугольник Паскаля и все предшествующие работы по теории вероятностей отвечали только на один вопрос: какова вероятность того или иного отдельного события. Ответ на этот вопрос в большинстве случаев имеет ограниченную ценность, поскольку чаще всего он мало что дает для оценки ситуации. Что на деле даст нам знание того, что игрок А имеет 60% шансов победить в отдельной партии в balla? Можно ли на этом основании утверждать, что он способен победить игрока В в 60% партий? Ведь победы в одном турнире недостаточно для этого утверждения. Сколько раз должны сыграть А и В, чтобы мы могли убедиться, что А играет лучше, чем В? Что говорит нам результат бейсбольного турнира этого года о вероятности того, что победившая команда является самой сильной вообще, а не только в этом году? Что говорит высокий процент смертности от рака легких среди курильщиков о вероятности того, что курение раньше срока сведет в могилу именно вас? Свидетельствует ли смерть слона о целесообразности спускаться в бомбоубежище при налетах? Реальные жизненные ситуации часто требуют от нас определения вероятности вполне определенного исхода на пути заключения от частного к общему. В жизни очень редко встречаются задачи, сводящиеся к чистой игре случая, для которых можно определить вероятность исхода до изучения ряда событий — a priori, как сказал бы Якоб Бернулли. В большинстве случаев мы вынуждены определять вероятности на основе имеющихся данных после ряда происшедших событий — a posteriori. Само понятие a posteriori предполагает эксперимент и измерение степени уверенности. В Москве семь миллионов жителей, но после гибели слона от фашистской бомбы профессор решил, что пришло время спускаться в бомбоубежище. Вклад Якоба Бернулли в решение проблемы определения вероятности на основе информации об ограниченном наборе реальных событий был двояким. С одной стороны, он сформулировал задачу в этом виде в то время, когда никто еще даже не усматривал необходимости ее постановки. С другой — он предложил решение, зависящее только от одного необходимого условия: мы должны предположить, что «при равных условиях наступление (или не наступление) события в будущем будет следовать тем же закономерностям, какие наблюдались в прошлом»5. — 96 —
|