Продуктивное мышление

Страница: 1 ... 150151152153154155156157158159160 ... 227

За шесть недель напряженной работы мне удалось по-настоящему понять трехмерные фигуры. (Годом поз­же я узнал, что один математик уже очень давно нашел формулу для многогранников, и все же я не хотел прой­ти мимо этого опыта, который привел меня к подлинному инсайту.) В течение этих недель проблема неизменно волновала меня, вызывала напряжение. Я изучал кон­кретные многогранники, например кубы, части кубов, некоторые пирамиды и т. д.; способы объединения телес­ных углов в полный телесный угол. За это время я зна­чительно развил в себе способность визуально представ­лять телесные углы и соединять их в воображении. Я не искал формулы методом проб и ошибок, не проверял гипотезы; я просто выяснял, что получится, если телес­ные углы воображаемого конкретного многогранника со­единятся в одной точке: например, как углы куба, све­денные в центр сферы, образуют полный телесный угол 1, какие суммы образуют другие углы других многогранни­ков — частей куба, пирамид, параллелепипедов и т. д.

Бывали очень драматические моменты, как, напри­мер, когда один из моих друзей сказал мне: «Перестань принимать это так близко к сердцу. Задача неразрешима, так как сумма углов пирамиды меняется при изменении ее высоты. Точнее, она является функцией высоты».

8) Но процесс мышления продолжал развиваться. После огромных усилий решение для трехмерных тел

1 Так же и в случае двух измерений угол при вершине квадрата является одной четвертью полного угла, причем все четыре угла делают его полным, или угол при вершине правильного шести­угольника составляет одну треть полного угла, три трети делают его полным.

Рис. 152

Вообще говоря, вводя понятие угла, следует рассматривать угол, как часть полного угла, или как часть вращения на полный угол (см. гл. 4. с. 162).

233

пришло ночью в полусонном состоянии. Хотя я не мог вспомнить, чтобы что-нибудь записывал, я утром обнару­жил на листе бумаги следующую формулу:

?e =? плоских углов +2 углов при вершинах+?? (= 1), где е обозначает внешний телесный угол. Возьмем плос­кость (а), согнем ее вдоль прямой линии (b); восстано­вим к каждой плоскости нормальную плоскость (с). Меж­ду нормальными «плоскими углами» (соответствующими боковым углам Н двумерных фигур) вы обнаружите «углы при вершинах» (с); согните эти углы в одной из точек (d), и вы получите ?. Чтобы многогранник был замкнутым, сумма углов ? должна составлять полный телесный угол!

Рис. 153

Вскоре я понял, что то, что справедливо в частном случае «изгибания плоскости», имеет силу для всех телесных углов. Если вершины всех углов рассматривать как центр сферы, то углы ?, «полярные углы», должны заполнять сферу. С помощью этой идеи я получил формулу для многогранников. Затем было получено решение для сум­мы внутренних углов, основанное на идее объемного «от­верстия».

— 155 —
Страница: 1 ... 150151152153154155156157158159160 ... 227