1 Позднее я нашел в одной книге замечание, принадлежащее физику Эрнсту Маху, который применил сходный метод. В результате суммирования б Мах тоже получил полный угол. Его подход несколько отличается от нашего, угол разбивается не на R, ?, R, а на 2R, ?, что приводит к психологически иному способу образования полного угла. 228 Рис. 143 2) Сразу после этого возникла следующая мысль: допустим, что стороны фигуры стремятся к нулю. Что произойдет в таком случае? Расстояние между соседними Рис. 144 параллельными сторонами боковых углов исчезнет, эти линии сольются в одну, совпадут также и вершины углов, и я получу именно ту картину, которая показана ниже: точку, которую окружает угловое пространство в 360°, построенное из углов ?! Рис. 146 3) Здесь возник следующий вопрос: а как обстоит дело с вогнутыми фигурами, которые не обладают ясной 229 структурой боковых углов с углом ? между ними? При такой постановке вопроса ответ ясен: Рис. 147 это не имеет никакого значения; следует учесть, что сторона угла может поворачиваться в противоположную сторону, но все равно углы ? должны в сумме дать полный угол. 4) Обычный метод определения формулы для суммы внешних углов многоугольника теперь выглядел действительно странным: «Сумма всех внутренних и полных внешних углов равна n · 4R...??+?e = n · 4R. Следовательно, сумма внешних углов равна n4R минус сумма внутренних углов. Поскольку из обычного доказательства с помощью треугольников 1 известно, что сумма внутренних углов равна n · 2R—4R, мы получаем формулу ?е = n · 4R— — (n ··2R—4R). Произведя вычитание, получаем: п · 4R— 1 Обычно сумму углов треугольника — 180°, или 2R (два прямых угла), — получают, не учитывая того, что треугольник является замкнутой фигурой. Обычное доказательство для суммы внутренних углов многоугольника заключается в следующем: постройте внутри многоугольника ? треугольников так, чтобы каждая сто- Рис. 148 рона многоугольника была основанием одного треугольника. Сумма углов всех треугольников равна n · 2R. Чтобы получить сумму внутренних углов многоугольника, вычтите из п · 2R смежные углы треугольников, которые располагаются вокруг средней точки. Сумма последних равна 4R. Следовательно: ?i = n ·2R—4R. 230 В этой формуле n · 2R есть результат вычитания n · 2R из n · 4R; 4R — это результат изменения знака члена —4R из формулы для внутренних углов. Величина членов этой формулы не имеет прямого отношения к тому, как углы многоугольника замыкают фигуру 1. Между тем я понял, что в действительности представляет собой n · 2R.+4R: это сумма боковых углов, то есть пар прямых углов, прилегающих к каждой стороне (n · 2R) плюс полный оборот (4R), замыкание, осуществляемое углами ?. — 153 —
|