Продуктивное мышление

Страница: 1 ... 148149150151152153154155156157158 ... 227

1 Позднее я нашел в одной книге замечание, принадлежащее физику Эрнсту Маху, который применил сходный метод. В ре­зультате суммирования б Мах тоже получил полный угол. Его

подход несколько отличается от нашего, угол разбивается не на R, ?, R, а на 2R, ?, что приводит к психологически иному способу образования полного угла.

228

Рис. 143

2) Сразу после этого возникла следующая мысль: до­пустим, что стороны фигуры стремятся к нулю. Что про­изойдет в таком случае? Расстояние между соседними

Рис. 144

параллельными сторонами боковых углов исчезнет, эти линии сольются в одну, совпадут также и вершины углов, и я получу именно ту картину, которая показана ниже: точку, которую окружает угловое пространство в 360°, построенное из углов ?!

Рис. 146

3) Здесь возник следующий вопрос: а как обстоит дело с вогнутыми фигурами, которые не обладают ясной

229

структурой боковых углов с углом ? между ними? При такой постановке вопроса ответ ясен:

Рис. 147

это не имеет никакого значения; следует учесть, что сто­рона угла может поворачиваться в противоположную сто­рону, но все равно углы ? должны в сумме дать полный угол.

4) Обычный метод определения формулы для суммы внешних углов многоугольника теперь выглядел действи­тельно странным: «Сумма всех внутренних и полных внешних углов равна n · 4R...??+?e = n · 4R. Следовательно, сумма внешних углов равна n4R минус сумма внутрен­них углов. Поскольку из обычного доказательства с помо­щью треугольников 1 известно, что сумма внутренних углов равна n · 2R4R, мы получаем формулу ?е = n · 4R— — (n ··2R—4R). Произведя вычитание, получаем: п · 4R

1 Обычно сумму углов треугольника — 180°, или 2R (два пря­мых угла), — получают, не учитывая того, что треугольник явля­ется замкнутой фигурой. Обычное доказательство для суммы внут­ренних углов многоугольника заключается в следующем: построй­те внутри многоугольника ? треугольников так, чтобы каждая сто-

Рис. 148

рона многоугольника была основанием одного треугольника. Сум­ма углов всех треугольников равна n · 2R. Чтобы получить сумму внутренних углов многоугольника, вычтите из п · 2R смежные углы треугольников, которые располагаются вокруг средней точки. Сум­ма последних равна 4R. Следовательно: ?i = n ·2R—4R.

230

В этой формуле n · 2R есть результат вычитания n · 2R из n · 4R; 4R — это результат изменения знака члена —4R из формулы для внутренних углов. Величина чле­нов этой формулы не имеет прямого отношения к тому, как углы многоугольника замыкают фигуру 1. Меж­ду тем я понял, что в действительности представляет собой n · 2R.+4R: это сумма боковых углов, то есть пар прямых углов, прилегающих к каждой стороне (n · 2R) плюс полный оборот (4R), замыкание, осуществляемое углами ?.

— 153 —
Страница: 1 ... 148149150151152153154155156157158 ... 227