Продуктивное мышление

Страница: 1 ... 151152153154155156157158159160161 ... 227

234

Последующие дни были посвящены строгим доказа­тельствам формул для сферы и т. д.

Я не буду описывать дальнейший ход моего мышле­ния. Здесь я прерву свой рассказ на том счастливом моменте, когда стала прозрачной внутренняя связь между замкнутостью и суммой углов многогранников и плоских фигур.

В заключение охарактеризуем основные этапы про­цесса мышления:

  1. Ощущение существенной взаимосвязи структуры замкнутых фигур и суммы их углов и потребность ясно постичь эту связь.
  2. Первичная идея целостной замкнутости и «углово­го пространства». Здесь произошло изменение цели: вме­сто того чтобы рассматривать внутренние углы, мы заня­лись вопросом о сумме внешних углов, смутно ощущая, что этот вопрос является структурно более простым. (Позднее эта мысль получила ясное подтверждение в хо­де мышления.)
  3. Сосредоточение внимания на необходимом для замы­кания фигуры этапе привело к радикальному изменению понимания значения угла, к интуиции относительно «угла вращения ?»; это произошло в результате отделения того, что является структурно релевантным для осуществления замыкания, от того, что таковым не является.
  4. Рассматривая углы ? как нечто целое, мы интуи­тивно поняли, что существует внутренняя связь между углами и замкнутостью. В отличие от простой суммы обычных углов все углы ? дают завершенную форму,
    замкнутость, полный угол в 360°. На этом этапе произо­шла перегруппировка частей целого.

?-части после отделения от боковых углов рассматри­вались как единое целое. Но даже если испытуемому на­чертить углы с уже проведенными дополнительными линиями, делящими каждый угол на три части, он может продолжать хаотически комбинировать углы обычным способом (при котором три части каждого отдельного угла оказываются равноценными, а сумма углов все еще состоит из обычных углов). Здесь производимая группи­ровка (отделение углов ? от структурно внешних боко­вых углов, не принимавших никакого участия в замыка­нии фигуры) направлялась задачей понять замкнутость фигуры. Концентрация внимания на углах ? и объедине­ние их в единое целое позволили найти структурный

235

перенос этого фактора (см. с. 227) на фоне внешних к структуре факторов: число боковых углов, обычных углов, сторон и вершин.

Рис. 154

  1. Было дано подробное доказательство полученной интуитивно формулы. Уменьшая длины сторон до нуля, мы установили прямую связь между внешними углами и первоначальной идеей «углового пространства», окружаю­щего точку.
  2. Возникла проблема, которая была затем решена; был найден принцип, применимый и в частном случае вогнутого многоугольника (см. с. 230).
  3. Благодаря инсайту было осмыслено обычное дока­зательство, которое само по себе оставалось непонятным. Обычная формула обрела новый и более глубокий смысл: было обнаружено функциональное значение членов фор­мулы.
  4. Затем был рассмотрен вопрос о внутренних углах. И снова вначале возникла глобальная идея целого — пред­ставление о цельном «отверстии», сумме отрицательных углов ?, равной 360°.
  5. Расширилась область применимости полученного результата: было обнаружено, что он распространим на все замкнутые плоские фигуры. Благодаря инсайту ис­чезли ограничения, характерные для обычной точки зрения.
  1. Мы почувствовали необходимость довести дело до конца: если в инсайте было обнаружено нечто фундамен­тальное, то найденное отношение должно выполняться также и для трехмерных фигур и т. д. Мы начинали с определения суммы телесных углов. Мы изучали сравни­тельно простые виды многогранников. Несмотря на труд­ности, мы в воображении объединяли углы и определяли их сумму. Вначале радикальное, общее решение казалось невозможным.
  2. Решение пришло однажды ночью — это было

236

— 156 —
Страница: 1 ... 151152153154155156157158159160161 ... 227