5) В этот момент возникла любопытная мысль: почему мы называем треугольник именно треугольником? Почему мы не называем его, например, четырехугольником или шестиугольником? Мы, конечно, можем его так назы- Рис. 150 вать, поскольку фактически в каждой точке на его сторонах находится угол. Но мы не считаем эти углы. Почему? Разве количество углов может быть любым? Нет. 1 Конечно, член 4R в формуле для внутренних углов прямо связан с замкнутостью в том смысле, что вершины прилегающих Рис. 149 друг к другу треугольников совпадают; но внутренняя связь между суммой углов самих треугольников и их замкнутостью не является столь отчетливой. 231 Теперь этот вопрос ясен: в этих точках на сторонах нет углов ?. Эти точки никак не связаны с изломом линии, ограничивающей фигуру, и с возвращением к ее началу, с замыканием многоугольника посредством вращения углов ?. 6) А как обстоит дело с внутренними углами? Столкнувшись теперь с этим вопросом, я снова не представлял себе, как можно на него ответить. И снова сначала возникла смутная идея: вокруг точки и фигуры имеется полный угол 360°. Внутри фигуры находится... «отверстие»! И скоро все стало ясно: должен быть полный отрицательный угол 360°: внутри боковые углы перекрываются. Величина этого перекрытия представляет собой отрицательный угол вращения, минус ?. Когда эта фигура замыкается, сумма таких углов должна составить полный отрицательный угол в 360°. Рис. 151 Здесь читатель вправе задать вопрос, что же из всего этого следует. Та же самая формула, которая была известна раньше, но она предстала теперь в новом свете: члены этой формулы приобрели прямое функциональное значение. И такое понимание сразу же привело к озарению (инсайту): если боковые стороны и то или иное их число являются внешними, если существенным оказывается только вращение углов ?, то это относится к любой замкнутой плоской кривой, к окружности, эллипсу, и т. д. ... (Я опускаю продолжение.) 7) Но проблема все еще не была окончательно решена. По мере того как она становилась ясной, возникало насущное требование: если такой ход рассуждения действительно имеет смысл, то тогда он должен иметь силу для любой замкнутой фигуры. Он должен быть справедливым для трехмерных многогранников, для четырехмер- 232 ных и n-мерных тел, вообще для всех замкнутых фигур... с необходимыми изменениями для неевклидового пространства. — 154 —
|