Рис. 139 Просто продолжая прямую линию? Вовсе нет. Я должен изогнуть линию в какой-то точке, если хочу получить замкнутую фигуру». Это быстро привело к идее: «Давай- Рис. 140 226 те сначала рассмотрим сумму внешних углов». И что получится? Изгибаясь, угол в 180° разбивается на два «боковых угла», каждый из которых является прямым, и между ними появляется дельта (?), «угол вращения». Важны именно дельты, вращение. Рис. 141 Рис. 142 И в целой фигуре по мере ее замыкания сумма дельт должна быть равна... полному обороту, углу в 360°, независимо от того, сколько у фигуры боковых сторон! Каждая сторона имеет два внешних прямых угла, по одному на каждом конце. Может быть столько сторон и, следовательно, столько углов, сколько мы пожелаем; но в каждой фигуре углы вращения должны в сумме составлять полный угол. Это было «интуицией». В этот момент я чувствовал себя очень счастливым. Я чувствовал: «Теперь я понимаю, в чем дело». Что же, в сущности, произошло? Я начал с обычного представления об углах и о завершенности или замкнутости. Я пытался понять, как возникает замкнутость; полный внешний угол при вершине превратился в два прямых угла плюс ?; я перестал связывать прямые углы с центральной идеей замкнутости, угол ? теперь рассматривается вместе с другими ? в качестве угла, образующего полный угол вращения. При таком понимании углов важные углы ? неожиданно оказались связанными с замкнутостью фигуры. «И»-отношение А (сумма углов) и В (замкнутая завершенность) превратилось в согласованное, понятное, прозрачное единство. А и В больше не были просто рядоположенными отдельными вещами, теперь они стали частями внутреннего единства. Замыка- 227 ние фигуры потребовало, чтобы ? дополнили друг друга до 360°. Этот процесс интеграции стал решением: то, что раньше было просто какой-то туманной и неудовлетворительной суммой, теперь приобрело вполне определенную форму. Мысль о том, что сумма углов ? равна 360°, возникла не как некое допустимое предположение, общее утверждение или вера, а как «интуиция»: структура фигуры позволила увидеть внутреннюю связь между замкнутостью и всеми углами ?. Вслед за этим быстро последовали следующие действия: 1) Было осознано, что должно произойти, если я шаг за шагом обойду фигуру, начиная с первой стороны первой ?: для того чтобы замкнуть фигуру, я должен снова прийти к исходной прямой, совершив полный оборот. Сначала появилась общая идея 1; затем она была реализована в виде последовательности действий: одна сторона угла ?1 поворачивается на некоторый угол до совпадения с другой стороной, 2 параллельно переносится в положение 3, поворачивается на угол ?2 и т. д. Чтобы обойти всю фигуру, осуществляя замыкание, и снова перейти в положение 1, сторона должна совершить полный оборот в 360°. — 152 —
|