И таким же образом он действовал, когда одним из сомножителей впервые оказалось трехзначное число. Или в 190 более сложных задачах, например 27 X 34, ребенок будет иногда рассуждать следующим образом: 20 X 30 + 20 X 4 7 X 30 + 7 X 4 Другое дело, если мы хотим, чтобы ребенок пользовался приемами быстрого счета, и требуем: «Ты не должен решать задачу старым способом; ты должен сразу записать результат» (скажем, 27 X 3). Дети часто отказываются от этого, они не понимают, о чем идет речь. В таких случаях я спрашиваю у них: «Ты мог бы это сделать так, чтобы записать только результат?» Тогда некоторые дети понимают, что дело не в том, чтобы получить правильный результат, а в том, что нужно придумать какие-то технические приемы, гимнастику для ума. А это значит, что нужно найти такой способ решения, который обладает целым рядом особенностей, таких, как разбиение на части, одна из которых может быть записана, а другую надо держать некоторое время в уме, другой способ группировки. Необходимо осознать, что некоторые-числа можно записать, потому что в дальнейшем они не будут подвергаться изменению, а другие записать нельзя, поскольку они еще могут измениться. Конкретно это означает следующее: в задаче 24X3 я могу спокойно записать 2 из 12, которое получаю, умножая 3 на 4, но не могу записать 1 из 12, потому что на нее может оказать влияние другая часть, результат умножения 20X3. Таким образом, я должен держать ее в уме, прибавить к последнему числу и записать только тогда, когда оно будет получено. Я не встречал ребенка, который мог бы сделать это без посторонней помощи. Я думаю, что причина этого не в том, что задача слишком трудна, а в том, что она слишком странна. (У многих детей нетрудно развить умение выполнять такие умственные упражнения, но индивидуальные различия в этом отношении кажутся мне весьма значительными. И эта задача относится не к продуктивному мышлению, а к приобретению навыка выполнения таких упражнений.) «То, что требуется», требуется здесь не самой задачей, а определенной искусственной техникой, которая обладает практическими преимуществами. Эти требования направлены, в сущности, на достижение технической, а не арифметической цели. 191 Некоторые, возможно, думают, что не стоит позволять детям пользоваться первым методом, который они не будут использовать в дальнейшем; многие считают, что не следует учить ребенка тому, от чего ему придется позднее отучаться. Я не согласен с этим. Мне думается, что хороший учитель начнет с первого способа, несмотря на то что ребенок в дальнейшем не будет им пользоваться. Обучение методу быстрого счета без понимания того, как он возникает, может вооружить ребенка шаблонными приемами, но оно не учитывает развития мышления (и когда забывается секрет метода, ученик теряется; этого не происходит при обучении другим методом). — 129 —
|