Продуктивное мышление

Страница: 1 ... 123124125126127128129130131132133 ... 227

Но верно ли, что, как, по-видимому, считают Торн­дайк и другие психологи, «достаточно одаренный ребе­нок» (с. 192), ищущий правильный способ решения, будет делать это лишь «посредством оперирования связя­ми», с помощью навыков и ассоциаций? Вот отчет одного ребенка, который не обладал выдающимися способностя­ми: «Это, конечно, очень сложно. Сначала я попробую решить менее сложную задачу. Можно? Например, 14X3. Если я умножу 4 на 3, то это будет равно... это значит 4,4,4. На самом деле неважно, беру ли я б, 16, 216 или какое-нибудь другое число... Если 3X4=12, то это значит двенадцать (что справа представлено в ви-

де 10 + 2). Ответ верен, потому что общее число одно и то же, только оно иначе представлено». (Получить «пра­вильный ответ» — значит осознать ?-требование, состоя-

189

щее в том, что сумма с одной стороны должна равняться сумме с другой стороны.) «Итак, 14x3 означает то же, что 10X3 плюс 4X3, и теперь мне остается только найти результат». Решив эту задачу, он с удовольствием пере­шел к решению более сложной задачи и успешно спра­вился с ней.

Я не стал бы непременно называть такого ребенка гением. Просто в своих действиях он руководствовался не слепыми привычками или силой ассоциаций, а осознани­ем необходимости «равенства», изменения отдельных эле­ментов без изменения их арифметической суммы.

К счастью, дети очень часто обнаруживают вполне ес­тественную тенденцию к осмысленному решению таких задач, стремление к самостоятельному их решению, не прибегая к слепым пробам. (Конечно, в некоторых шко­лах эти прекрасные тенденции значительно ослабляются в первые же годы обучения. Порой мне кажется, что де­ти, еще не поступившие в школу, умнее тех, кто уже стал объектом механического обучения.)

И вообще я не встречал детей, которые делали бы та­кие бессмысленные ошибки первого типа, описанные Торндайком, разве что в некоторых школах вследствие слепых механических упражнений, усталости или не­брежности. По-видимому, существует два типа детей, которые вообще отказываются решать такие задачи: одни из них считают, что не следует пытаться делать то, чему их не учили, другие не могут решить задачу, несмотря на то что пытаются сделать это, и в то же время реши­тельно отказываются применять предложенные нелепые способы решения. Вместе с тем я встречал детей, кото­рые (отнюдь не будучи гениальными) успешно решали эту задачу.

Впервые столкнувшись с задачами типа 24X3, один ребенок действовал следующим образом: «Я не могу сде­лать это сразу; но ведь это 4 X 3 и 20 X 3».

— 128 —
Страница: 1 ... 123124125126127128129130131132133 ... 227