Сейчас я расскажу о трех реакциях на полученные результаты. Однажды я рассказал об этих результатах знаменитому психологу. Я сказал, что они могут объясняться плохим преподаванием, быть следствием упора на формирование бессмысленных ассоциаций и заучивание, что ослабляет установку на соображение. «О нет, — возразил он, — вовсе нет. Если вы задаете такие «гештальтвопросы», то отрицательный результат совсем не кажется удивительным, детей не учат решению таких задач. В школе их учат арифметике. Если вы будете учить их на таких гештальтзадачах, они научатся их решать. Дело только в том, чему вы их учите». Эти замечания содержат четкую формулировку теоретической проблемы. Этот психолог сам является тонким 1 См.: М a i е г N. R. F. Op. cit. 2Luchins A. Mechanization in problem solving: the effect of Einstellung.—"Psychological Monographs". 1942. Vol. 54, N 6, 3A s с h S. E. Some effects of speed on the development of a mechanical attitude in problem solving. (Доклад, прочитанный в 1940 г. на заседании Восточной психологической ассоциации.) 4О последствиях обучения, игнорирующего структурные закономерности, см. гл. 1, 2; ср. также результаты д-ра Катоны в "Organizing and memorizing". (См. также гл. 5 и Приложение 4.) 167 мыслителем. Его замечания станут понятными, если учесть, что для него, как и для многих других, мышление 1еоретически есть не что иное, как функционирование механических ассоциативных связей, привычек, приобретенных в результате повторения. Чем же еще может быть мышление?! Математик, которому я рассказал об этих экспериментах, заметил: «Вы ошибаетесь. Неважно, найдете ли вы такой короткий способ решения; метод точного вычисления является правильным, общим методом. Вы можете пользоваться кратчайшим путем только в исключительных случаях». Это важный вопрос. Отвечая ему, я сначала ссылался на некоторые вещи, о которых говорил в предыдущих главах. Затем я спросил, считает ли он открытие Гаусса также просто экономной процедурой, не имеющей особого значения. И наконец, я сказал: «Я, напротив, считаю метод Гаусса не просто конкретным приемом короткого способа решения. Речь идет об основной установке в отношении к задаче, к способам решения. Для многих школьников деление действительно означает технику, приобретаемую тренировкой, как, например, в случае „8 делим на три, получаем 2; сносим 2; 21, деленное на 3, равно 7; 6, деленное на 3, равно 2... 272". Вот что такое для них деление. Но хотя механический навык обладает практической ценностью, особенно в смысле освобождения ума для более важных задач, возникающих в проблемных ситуациях, он не должен отуплять человека. Следует различать случаи, когда техника деления рассматривается и применяется просто как техника, и случаи, когда человек не понимает, что суть деления заключается в подразделении данной конкретной структуры на части. И то же относится к умножению. — 114 —
|