Продуктивное мышление

Страница: 1 ... 112113114115116117118119120121122 ... 227

Рис. 92

И то же справедливо для площади в

Площадь превращается в прямоугольник.

Рис. 93


Даже если кривая смещена!

Рис. 94

1 Для того, чтобы действительно убедиться в том, что такой структурный взгляд (здесь xn=n3 со сдвигом) является верным, некоторые продолжают выяснять, будут ли другие значения слева и справа соответствовать установленному принципу. Другие ис­следуют также, что произойдет со значениями при изменении ря­да. Но в данном опыте главным было не это. Наш испытуемый со­средоточился на определенных целостных свойствах рядов, о чем свидетельствовали его дальнейшие действия.

171

Дело в симметрии и равновесии всей фигуры. А как же для других кривых? Конечно, это справедли­во и для у = х (см. рис. 95А) или для у = ах (см. рис. 95Б).

Рис. 95А Рис. 95Б

При любом изменении угла это справедливо для любой симметрично оборванной прямой. Для у = ах + b линия только сдвигается. И площадь всех фигур вроде следую­щей равна произведению высоты центра и основания.

Рис. 96

Это справедливо для соответствующего ряда хп = xn-1 + k. Сумма членов равна среднему значению, умно­женному на число членов, с умноженному на n».

Таким образом, он пришел к теореме Гаусса, отправ­ляясь не от ряда, начинающегося с 1, а увидев равновесие в распределении чисел, которое является свойством струк­туры в целом.

Теперь я вернусь к процессу мышления этого испытуе­мого. Главное, что здесь нужно понять, — это то, что дело не в нахождении разностей между соседними членами, не в констатации равенства этих разностей и т. д., или в открытии законов построения таких рядов. Важнейшим

172

Рис. 97

оказывается вопрос о равновесии целого, осознание связи равновесия с особенностями целого. И это равновесие является весьма динамичным, чувствительным к любым отклонениям — или нарушениям в любой из частей.

Если построить схему точек таких гауссовых рядов, то мы увидим, что эта линия является прямой или что су­ществует отклонение от прямолинейности (структурное нарушение), задолго до того, как сможем установить или узнать величину разностей, их равенство и т. д. Напри­мер:

1+2+3+4+6+7+8

Рис. 98

или

Рис. 99

173

Мы замечаем подобные нарушения, которые противоре­чат явному свойству целого — прямолинейности. Такие ряды, например первый из приведенных выше (без чис­ла 5), могут быть описаны как ряды, подчиняющиеся закону, выраженному в общей формуле xn = f(xn-1). Он так же закономерен, как ряд, соответствующий прямой, только обладает более сложной структурой. Но ряд хп = = xn-1 + k отличается своей структурной простотой, струк­турной ясностью свойства целого. Воспринимая ряд

— 117 —
Страница: 1 ... 112113114115116117118119120121122 ... 227