2На международном психологическом конгрессе в Гронингене в 1926 г. я сообщил о проведенных в этой связи исследованиях в докладе о порогах восприятия («Zum Problem der Schwelle»).—Bericht ?ber den VIII Internationalen Kongress f?r Psychologie. Gro- 175 Рис. 103 го описывать такие случаи, устанавливая свойства целого, которые не будут меняться, несмотря на изменение частей. Рис. 104 В современной физике такая ситуация является довольно типичной. В таких случаях нам известны свойства целого, поведение системы в целом, но мы не знаем точно, как ведут себя мельчайшие частицы, или знаем, что они ведут себя случайным образом. Должны ли мы, пытаясь найти математическую формулировку, начинать с установления законов для этих мельчайших частиц? Возможно, существуют способы начинать с определения свойств целого, которые допускают изменения в поведении мельчайших частиц. Более того, нельзя ли разработать таким образом методы изучения проблем динамики? Рассматривать тенденции к некоторым трансформациям не на основе простого суммирования отдельных элементарных сил, а как функции свойств целого и их нарушений? Как бы ни обстояло дело в дальнейшем, конечно, неверно, что целостный подход является лишь «глобальным», «нестрогим», справедливо лишь то, что с техниче- ningen, P. Noordhoff, 1926). И несколько лет спустя Вудвортс при вел интересный пример: с самолета на поле, которое обрабатывалось в течение многих десятилетий, был обнаружен доисторический вал. Раньше его никто не замечал. Он был обнаружен благодаря широкому обзору всего поля, который был у пилота. 176 ской точки зрения противоположный способ действий является более разработанным. Вернемся теперь к процессу, описанному на с. 170 и сл. Хотя, рассматривая задачу Гаусса, испытуемый и совершал действия, похожие на действия других испытуемых (см. II), существует все же некоторое различие. Этот испытуемый подошел к задаче шире и глубже. Для него эта задача была не просто отличной возможностью реорганизации конкретной задачи; он сосредоточил свое внимание на возможностях, открывавшихся благодаря установлению внутренней связи между формой ряда и его суммой. Потом он сравнил свою формулу с · п с формулой Гаусса (n + 1) n/2 и заметил, что последняя переходит в с · п и заметил, что последняя переходит в с · п при небольшом ее изменении на · п. Затем он сказал: — 119 —
|