Продуктивное мышление

Страница: 1 ... 103104105106107108109110111112113 ... 227

157

столь обременительно, задание превратилось в шутливую игру. Однако даже такие действия не могли продолжать­ся длительное время.

Вернемся к обсуждаемой нами проблеме: роль осмыс­ленного упорядочения, особенности разумной группиров­ки становятся технически ясными, когда мы даем детям следующие задачи и сравниваем их подходы и реакции:

  1. m + аа + bb + сс
  2. т+а+bса+сb
  3. m + a + b + cаbс

или 4. т+а + bсbа и т. д. с m или без него 1.

В первом случае мы от большинства испытуемых по­лучаем быстрые ответы: «Конечно, сумма равна т», иног­да с замечаниями типа: «Какой смысл делать что-нибудь, чтобы тут же уничтожить результат действия?» - и они разумным образом группируют следующие пары

m |+аа|+bb| +сс

и никогда

т+а|а+b| —b+с|с2

Сходным образом, но более решительно в случае, когда имеется ряд

та + аb + bс + с...

1 Другие конкретные случаи:

96+77-77+134-134,

или 96+77-134-77+134,

или 48+79-124-79+124,

или 48+79-79+124-124.

В последнем случае слепая процедура:

48+79=127

127-79=48

48 + 124 и т. д.

2 Чтобы проиллюстрировать теоретические представления о проблеме переноса, рассмотрим А— B-случаи в элементарной форме:

1) Сначала показываем, заучиваем a+b—а. Например 35 + 14—35

2) A-формаc + dc87+69—87

  1. B-формаа + b—с35+14—87
  2. A-формаа + bb35+14—14

В 1) процедура группировки первого члена с последним «по­казывается, заучивается». Во 2) все члены изменены, но сохраняется структура оригинала. В 3) изменений меньше; этот пример более сходен с заученным образцом с точки зрения поэлементного анализа, с позиций представлений о простой сумме, стимуле — ре­акции. Но если имеется какое-нибудь понимание, то ребенок совершит перенос на задания 2) и 4), но не на задание 3).

158

мы получаем

т |— а + а| — b + b|— c + c...

но не т—а| +а—b| + bс | +c...

Большинство испытуемых даже не пытаются искать сум­му т+а или разность та. Или, если пытаются, скоро досадуют на это, восклицая: «Как глупо, что я не уви­дел!»

Во второй задаче мы обнаруживаем больше не свя­занных между собой слепых действий. Часто наблюда­ются колебания, беспокойство, замечания вроде: «Это нужно упорядочить», «Здесь нет порядка», и дети пере­писывают ряды, образуя осмысленные пары.

Третий тип задач кажется проще второго и приводит к быстрому нахождению соответствующих половин: за­дачи решаются легче, если числа не являются произволь­ными, а используется определенный принцип, как в т—1—2—3 + 3 + 2 + 1 и других подобных примерах.

— 108 —
Страница: 1 ... 103104105106107108109110111112113 ... 227