Хотя явно бессмысленно в B-случаях применять метод Гаусса (особенно если ряд длинный), тем не менее некоторые испытуемые слепо используют его. В то же время другие испытуемые разумно отвергают B-задачи или решают их с помощью громоздкого метода, в то время как с A-задачами справляются вполне осмысленно. Таким образом можно выявлять, изучать и проверять, какие из структурных свойств задачи Гаусса являются «существенными», какова внутренняя структурная связь между операциями и формой, какие факторы являются периферическими. В различных типах задач существенными были: в b — независимость структурных факторов от положения начала ряда; в с — обязательная симметрия ряда, проверяемая по наличию и месту разрыва; в d — независимость структурных особенностей от величины постоянной разности членов; в е — независимость внутренней структурной связи от характера конкретных операций, о чем свидетельствует перенос на структурно сходные случаи с умножением. Особенно интересно исследовать, какие формы задач лучше способствуют открытию метода с помощью учителя или без него. И с теоретической точки зрения очень важно было установить, что более короткие ряды отнюдь не являются самыми лучшими и даже что ряд 1 + 2 + 3 + 4+ + 5 + 6 не обязательно лучше ряда 1 + 3 + 5 + 7 + 9 + 11. Не следует забывать следующий тривиальный факт: неупорядоченные ряды с переставленными членами вызывают особые затруднения и при применении метода, и при его открытии. Правильный порядок делает ряд умопостигаемым, указывает на необходимую согласованность членов ряда. Однако некоторые изменения порядка не 153 являются, по-видимому, неблагоприятными. Важна, вероятно, не величина отдельного отклонения от первоначального ряда; помогать или мешать ясному видению целого может скорее определенный тип упорядоченности. В случае 1+10+2+9+3+8+4+7+5+6 испытуемый иногда останавливается и восклицает: «Тут есть последовательность: эти числа возрастают, а эти — убывают», показывая Рис. 78 или образует пары: Рис. 79 Последний прием приближается к хорошо известным приемам «быстрого счета», которыми пользуются бухгалтеры, складывая большие числа. Вместо того чтобы считать, последовательно складывая числа, они считают парами или тройками, образуя легко запоминаемые круглые числа. Этим приемам, конечно, недостает понимания связи с «принципом» построения ряда. III Столкнувшись с задачей определения суммы ряда и не получив никакой помощи, многие не могут найти гауссова решения. Почему? Что делает эту задачу для многих столь трудной? Что кроется за словами: «Чтобы решить эту задачу, нужно обладать гением юного Гаусса»? Но почему тогда это сделал маленький мальчик из упоминавшихся примеров, причем сделал это последовательно и с легкостью? Что с психологической точки зрения лежит в основе таких творческих достижений? — 105 —
|