Теория струн и скрытые измерения Вселенной

Страница: 1 ... 177178179180181182183184185186187 ... 302

Иными словами, мы нашли геометрическое решение проблемы, которую не могли решить другими способами. Мы показали, что не стоит волноваться о полях или дифференциальных уравнениях. Все, о чем следует беспокоиться, это о построении устойчивого расслоения. Что означает выражение «расслоение с устойчивым наклоном»? Когда мы говорили о наклоне кривой, мы отметили, что это число, связанное с кривизной, а устойчивость наклона расслоения в данном случае связана с кривизной расслоения. Проще говоря, «наклон выражает чувство равновесия, — объясняет математик Рон Донаги из Пенсильванского университета. — Он указывает, что кривизна в одном направлении не может быть намного больше, чем кривизна в другом направлении. Независимо от выбранного пути, ни одно направление не может быть слишком экстремальным относительно других направлений».[163] Любое расслоение можно разделить на более мелкие части или субрасслоения, а требование устойчивости означает, что наклон любого из этих субрасслоений не может быть больше наклона расслоения как единого целого. Если это требование выполняется, то такое расслоение является расслоением с устойчивым наклоном, а калибровочные поля удовлетворяют эрмитовым уравнениям Янга-Миллса. В результате условие суперсимметрии будет выполнено.

В некотором смысле идея устойчивости наклона, являющаяся центральной для теоремы DUY, представляет собой следствие теоремы Калаби-Яу, поскольку эта теорема выдвигает определенные требования кривизны к многообразию Калаби-Яу, гарантируя, что касательное расслоение будет обладать устойчивым наклоном. А тот факт, что уравнения Калаби-Яу и эрмитовы уравнения Янга-Миллса одинаковы для касательного расслоения, когда в основе лежит метрика Калаби-Яу, является еще одним следствием доказательства гипотезы Калаби, которое заставило меня подумать о взаимосвязи между устойчивостью наклона и эрмитовыми уравнениями Янга-Миллса. Возникшая у меня идея заключалась в том, что расслоение будет удовлетворять этим уравнениям тогда и только тогда , когда оно устойчивое.

По сути, Дональдсон доказал это в своей части теоремы DUY, опубликованной им в 1985 году, конкретно относящейся к особому случаю двух комплексных размерностей. Уленбек и я работали независимо от Дональдсона, и в работе, вышедшей в свет через год, мы доказали, что аналогичный результат применим к любой комплексной размерности и соответственно к любому пространству с четным количеством реальных размерностей. Я считаю DUY одной из самых сложных теорем, которые я когда-либо доказывал или — в данном случае — доказал совместно с другим ученым. В настоящее время наш труд вместе с работой Дональдсона называется DUY.

— 182 —
Страница: 1 ... 177178179180181182183184185186187 ... 302