В качестве решений уравнений Эйнштейна многообразия Калаби-Яу определенной геометрии могут помочь нам произвести расчет гравитационной части нашей модели. Но могут ли эти многообразия учитывать другие силы, входящие в Стандартную модель, и если да, то каким образом? Для ответа на этот вопрос, боюсь, нам придется выбрать окольный путь. На сегодняшний день физика элементарных частиц — это квантовая теория поля, что означает, что все силы, а также все частицы представлены полями. Зная поля, пронизывающие четырехмерное пространство, мы можем вывести связанные с ними силы. Эти силы, в свою очередь, могут быть представлены в виде векторов, обладающих направлением и длиной, это означает, что в каждой точке пространства объект будет испытывать притяжение и отталкивание в определенном направлении и с определенной силой. Например, в произвольной точке Солнечной системы сила тяготения, приложенная к такому объекту, как планета, вероятно, будет направлена к Солнцу, а величина этой силы будет зависеть от расстояния до Солнца. Электромагнитная сила, действующая на заряженную частицу, находящуюся в данной точке, точно так же будет зависеть от ее положения относительно других заряженных частиц. Стандартная модель является не просто теорией поля, но специальным видом теории поля, называемой калибровочной теорией и получившей широкое распространение в 1950-е годы благодаря работе физиков Чжэньнин Янга и Роберта Миллса (впервые упомянутых в третьей главе). В основе этой теории лежит идея о том, что Стандартная модель объединяет различные симметрии в сложную группу симметрий, которую обозначают как SU(3)?SU(2)?U(1). Эти симметрии являются калибровочными, что делает их специфическими и непохожими на обычные симметрии. Можно взять одно из разрешенных преобразований симметрии, например вращение на плоскости, и применить его по-разному в различных точках пространства-времени, выполнив поворот, скажем, на 45° в одной точке, на 60° в другой и на 90° в третьей. Несмотря на неоднородность применения симметрии, «уравнения движения», которые управляют динамической эволюцией полей, не изменятся, как и вся остальная физика. Вообще ничего не изменится. Симметрии, как правило, не работают таким образом, если они не являются калибровочными симметриями. Фактически Стандартная модель имеет четыре «глобальные» симметрии, связанные с частицами вещества и сохранением заряда, которые не являются калибровочными. Эти глобальные симметрии действуют на материальные поля Стандартной модели, которые мы обсудим позже. В Стандартной модели и вообще в теории поля существует еще одна глобальная симметрия, которая не является калибровочной. Эта симметрия называется симметрией Пуанкаре . Она включает простые переносы, такие как перемещение всей Вселенной на один метр вправо или проведение одного и того же эксперимента в двух разных лабораториях, и вращения, когда конечный результат выглядит аналогично исходному. — 177 —
|