Принцесса или тигр?

Страница: 1 ... 124125126127128129130131132133134 ... 138

Рассмотрим теперь произвольную машину, которая подчиняется правилам 1 и 2 (и, возможно, еще каким-то правилам). Возьмем некоторое число Н. Мы знаем, что, согласно правилам 1 и 2, должно существовать такое число X, которое порождает число НХ (напомним, кстати, что одним из таких чисел является число Н32НЗ). Поскольку число X порождает число НХ, то оба они должны быть либо отмирающими, либо вечными (ведь, как мы только что убедились, их «выживаемость» одинакова). Значит, не может существовать такого числа Н, для которого в случае произвольного X одно из пары чисел Н и НХ было бы отмирающим, а другое — вечным, поскольку для конкретного числа вида Х=Н32НЗ это оказывается совсем не так. Следовательно, ни одна машина, подчиняющаяся правилам 1 и 2, не может решить задачу о своей собственной «выживаемости».

Отметим по ходу дела, что полученный результат оказывается справедливым также для любой машины, которая подчиняется правилам 1 и 4, а в сущности, и для любой машины, которая подчиняется закону Мак-Каллоха. (Кстати говоря, вся эта проблема тесно связана с известной «проблемой останова» для машин Тьюринга, решение которой, как известно, тоже отрицательно.)

Стр. 207

18 Машина, которая так и не была создана

Как-то днем, вскоре после описанных событий, Крейг спокойно сидел дома, в своем кабинете. В дверь робко постучали — это оказалась его квартирная хозяйка.

— Входите, пожалуйста, миссис Хоффман,— пригласил Крейг.

— Простите, мистер Крейг, там вас спрашивает какой-то джентльмен. Только больно уж чудаковато он выглядит,— сказала миссис Хоффман.— Говорит, будто он на пороге величайшего открытия в математике! И еще утверждает, что вас это необычайно заинтересует, и потому он хочет видеть вас немедленно. Что ему сказать?

— Ну что ж,— несколько помедлив, ответил Крейг.— Проведите его ко мне. У меня как раз найдется полчасика.

Через несколько секунд дверь кабинета распахнулась и в комнату влетел безумного вида человек, смахивавший на изобретателя (это и был изобретатель). Он швырнул свой портфель на диван и, вскинув руки кверху, начал приплясывать, как сумасшедший, приговаривая:

— Нашел! Нашел! Еще чуть-чуть и я стану самым великим математиком на свете! Евклид, Архимед, Гаусс— все канут в Лету! А Ньютон, Лобачевский, Бойаи, Риман — разве...

— Спокойно, спокойно,— не повышая голоса, но достаточно твердо прервал его Крейг.— Что же именно вы нашли?

— Еще не совсем нашел,— отвечал незнакомец уже не так возбужденно.— Но вот-вот найду и, когда найду, стану самым великим математиком всех времен и народов! Имена Галуа, Коши, Дирихле, Кантора...

— 129 —
Страница: 1 ... 124125126127128129130131132133134 ... 138