Принцесса или тигр?

Страница: 1 ... 128129130131132133134135136137138

Существует и другой тип машин, которые можно назвать генерирующими, или перечисляющими, машинами Такие машины будут играть более важную роль в наших последующих рассуждениях (где мы следуем теориям Поста). Эти машины не имеют входов; они запрограммированы на генерирование множества положительных целых чисел. Например, одна машина может генерировать у нас множество четных чисел, другая — генерировать множество нечетных чисел, третья — множество простых чисел, и т. д. При этом типичная машинная программа для генерирования четных чисел может выглядеть так.

Мы задаем машине две команды (1) напечатать число 2; (2) если напечатано число n, то напечатать число n+2. (Разрешается задавать вспомогательные правила, которые определяют порядок выполнения команд таким способом, чтобы машина в конечном счете выполнила все, что она может выполнить.) Такая машина, подчиняясь команде (1), рано или поздно напечатает число 2, а напечатав 2 она в конце концов, подчиняясь команде (2), напечатает число 4, затем, напечатав 4, она, опять же руководствуясь командой (2), напечатает число 6, потом числа 8, 10 и т. д. Тем

Стр. 213

самым наша машина будет генерировать множество четных чисел. (Отметим, что без введения дополнительных команд она никогда не сможет произвести нам числа 1, 3, 5 или любое другое нечетное число.) Чтобы запрограммировать машину на генерирование нечетных чисел, нам следует просто заменить первую команду на команду «напечатать число 1». Иногда объединяют вместе две или несколько машин, с тем чтобы информация на выходе одной машины могла быть использована в другой. Пусть, например, у нас имеются две машины, А и В, программу для которых мы составим следующим образом. Машине А мы зададим две команды: (1) напечатать число 1; (2) если машина В напечатала число n, то напечатать число n +1. Машине В мы задаем только одну команду: (1) если машина А напечатала число n, то напечатать число n +1. Какие числа будет генерировать машина А, а какие — машина В? Ответ: машина А будет генерировать множество нечетных чисел, а машина В — множество четных чисел.

Теперь представим себе, что программа для генерирующей машины записывается не на естественном языке, а кодируется в виде некоторого целого числа (представляющего собой цепочку цифр); кодирование можно осуществить так, чтобы каждое положительное целое число представляло собой номер определенной программы. Пусть Мn—это машина, программа которой имеет кодовый номер n. Расположим теперь все генерирующие машины в виде бесконечной последовательности М1, М2, ... , Мn ... (М1 — это машина с номером программы 1, М2 — машина с номером программы 2 и т. д.)

— 133 —
Страница: 1 ... 128129130131132133134135136137138