Оно падает ускоренным движением из h в С за то же время, за какое оно упало бы из А; и за такое же время оно поднимается в F затухающим движением. Стало быть, если бы за эти два промежутка времени оно падало перпендикулярно из точки А, оно прошло бы четыре диаметра окружности. Значит, тело, подвешенное в центре М, затратило бы на колебание такое же время, какое оно затратило бы, проходя перпендикулярно четыре диаметра, либо, что то же самое, проходя высоту маятника восемь раз. Условия, необходимые для изохронных колебаний Таково соотношение между движением колебательным и движением перпендикулярным, когда, по нашему предположению, маятник опускается и поднимается по хордам. Ведь поскольку дуги окружности тем менее отличаются от хорд, чем они меньше, предполагается, что соотношение остается тем же, когда маятник совершает колебание по малой дуге LCK. По правде говоря, это допущение не совсем точно, поскольку геометры доказывают, что время, необходимое для того, чтобы опустить тяжелое тело по бесконечно малой дуге, относится к времени, необходимому для того, чтобы опустить его по хорде той же дуги, как длина окружности — к четырем ее диаметрам, или приблизительно как 355 к 452. Между тем периоды колебания по сколь угодно малым дугам окружности равны, потому что они соотносятся как равные периоды падения по хордам этих дуг. Вам следует отметить, что во всем сказанном нами о движении мы упускаем из виду трение, а также сопротивление воздуха. Но трение тем менее ощутимо, чем длиннее маятник и чем меньшую дугу он описывает. Если бы не существовало ни трения, ни сопротивления воздуха, маятник, раз качнувшись, вечно продолжал бы свои колебания в равные промежутки времени. Когда маятник короток, а дуги большие и трение и сопротивление воздуха более ощутимы, то колебания происходят в неравные промежутки времени. А когда, наоборот, маятник длиннее, а дуги меньше, колебания могут без ощутимой ошибки рассматриваться как происходящие в одинаковые периоды
Соотношение между длиной маятника и продолжительностью колебаний Время колебаний тем меньше, чем короче сам маятник. Вот каково должно быть это соотношение (рис. 26). AGBE и D/Bi — две окружности, диаметры которых АВ и DB относятся друг к другу как 4 к 1. Мы доказали, что если тело падает из А в В за определенное время, то за промежуток времени, вдвое меньший, — 51 —
|