Теперь я прошу вас дать волю своему воображению. Представьте себе бесконечное пространство, совершенно темное; отождествитесь с этим пространством и вообразите, что это полнота, заполненность, а не пустота. Все представляет собой совершенное равновесие, уравновешенность, нет ничего недостающего и никакой напряженности. Едва действующее сознание стремится к своему рождению, и любой процесс начинается с образования областей, в которых наборы различных аспектов нейтрализуются своими противоположностями, порождая тем самым пустоты, частичные полости в этой полноте. Так перед нами возникают звезды, миры и все прочие явления. Эти пустоты представляют собой, так сказать, сферы напряженности в полноте, они подталкивают дремлющее семя сознания к определенному суженному содержанию. Сознание приходит в движение из-за боли, вызываемой этими пустотами, из-за опустошенности—во внешнем времени этот процесс занимает годы, а в субъективном, скорее всего, происходит мгновенно. Постепенно развивается способность сознавать — сначала явственные объекты в сознании, а затем, очень медленно, и само Сознание, Сознание-без-Объекта. Когда сознание достигает того уровня, где осознает само Сознание, темное пространство постигается как Свет — то, чем оно, вообще говоря, было всегда. Таким образом, есть полное отсутствие сознания, олицетворяемое черным, непроницаемым пространством, и Полное Сознание, символом которого служит светлое пространство, но оба представляют собой одно и то же, за тем исключением, что в одном случае есть сознание, уже осознающее само себя. Оно появляется на свет в родовых муках, вызванных пустотами среди Полноты. Восторг Полноты возникает после того, как не остается никаких пустот. Сейчас я описываю процесс развития не как сложение, умножение и увеличение, а как процесс вычитания, деления и уменьшения — сужения с целью осознания Сознания, вопроса невероятно, поразительно тонкого. Область совершенного, summum bonum*, становится следствием развития до уровня целостной, неуменьшенной Полноты. ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ Рис. 23 Прежде чем мы перейдем к мандале, я хотел бы ввести новую тему, поскольку есть еще один вопрос, который окажется для нас важным. Нам опять предстоит заняться математикой и ознакомиться с очередной игрушкой. Есть несколько тригонометрических функций (см. рис. 23) — синус, косинус, тангенс, котангенс и так далее, — но мы поговорим только об одной из них: о синусе. Мы произносим это название как «синус», но обычно эту функцию записывают в сокращенной форме: sin. Синус угла ? равен а/с, косинус — b/с, тангенс — а/b, а котангенс — b/а, но мы не будем рассматривать остальные функции. Я хочу построить одну кривую. Давайте начертим такую окружность (см. рис. 24): — 61 —
|