В силу такого подхода и частого применения вычислений иррациональностей грань между рациональными числами и иррациональностями начинает стираться. К представлению о числе как о собрании единиц прибавились представления об отношениях непрерывных величин. Была установлена адекватность геометрической несоизмеримости с арифметической иррациональностью. В математике вместо двух обособленных понятий – числа и отношения, возникла новая, более широкая концепция действительного положительного числа. Уже в XIII веке этот факт был констатирован с полной определенностью; Насирэддин (1201–1274) писал: «Каждое из отношений может быть названо числом, которое определяется единицей так же, как один из членов этого отношения определяется другим из этих членов» . Можно сказать, что идея создания единой концепции действительного числа путем объединения рациональных чисел и отношений, появившаяся у математиков Византии, получила на Ближнем Востоке известное завершение. В Европе же подобная идея не появлялась довольно долго. Только с XVI века бурное развитие вычислительных средств начало приводить ученых к ее осознанию, а с достаточной степенью общности она была высказана лишь И. Ньютоном в 70-х годах XVII века (опубликована в 1707) в его «Всеобщей арифметике»: «Под числом мы понимаем не столько множество единиц, сколько отвлеченное отношение какой-нибудь величины к другой величине того же рода, принятой нами за единицу. Число бывает трех видов: целое, дробное и иррациональное. Целое число есть то, что измеряется единицей; дробное – кратной долей единицы; иррациональное число несоизмеримо с единицей» . Великий поэт и математик Омар Хайям (ок. 1048 – ок. 1122) и Насир-ад-дин ад-Туси (1201–1274) явно указывали, что каждое отношение величин, все равно, соизмеримых или нет, может быть названо числом. Величие этих достижений становится особенно ясным, если заметить, что полное признание отрицательных чисел европейскими математиками было достигнуто очень нескоро. Например, Ф. Виет (1540–1603), которому алгебра многим обязана, избегал отрицательных чисел, а в Англии протесты против отрицательных чисел раздавались даже в XVIII веке. В XI веке тюрки-сельджуки захватили большую часть Ирана и византийских владений в Малой Азии. На этих землях народы осваивали и развивали наследие всех предшественников, и византийцев и арабов. Омар Хайям писал стихи по-персидски, научные трактаты по-арабски, а в служебных делах пользовался тюркским языком. Потерпев неудачу в прямом поиске корней произвольного кубического уравнения, он открыл несколько способов приближенного вычисления этих корней, предлагая сделать это, используя хорошо знакомые кривые. Как только (в XVII веке) Рене Декарт добавил к ней вторую идею – описать любую кривую с помощью чисел, родилась аналитическая геометрия, в которой решение алгебраических уравнений слито воедино с теорией чисел и с наглядной геометрией. — 268 —
|