Индийские математики ввели в расчеты и правильно трактовали понятие отрицательного числа. Это пример, как иной подход к проблеме позволяет получать другие результаты. Ведь византийцы работали с отрезками прямых, представить себе отрезок отрицательной длины невозможно. Да и нулевой отрезок имеет мало смысла. Другое дело – индийская математика. Брахмагупта разъясняет, что числа могут трактоваться либо как имущество, либо как долг. Правила операций с числами тогда таковы: сумма двух имуществ есть имущество, двух долгов – долг, имущества и долга – их разность, которая либо долг, если он больше, либо имущество, если оно больше, либо нуль, если они равны. Сумма нуля и долга есть долг, имущества и нуля – имущество. Произведение двух имуществ или двух неимуществ есть имущество; результат произведения имущества на долг представляет убыток. То же правило справедливо и при делении. Квадрат имущества, или долга, есть имущество; имущество имеет два корня: один составляет прибыль, другой – долг. Корня убытка не существует, ибо таковой не может быть квадратом. Однако, вводя отрицательные числа, индийские математики не использовали их как равноправные элементы математики, считая их только чем-то вроде логических возможностей, потому что, по выражению Бхаскары, люди с ними не согласны. Развитие методов решения задач неопределенного или диофантова анализа представляет одно из высших достижений индийской математики. Причина заинтересованности математиков Индии в решении подобных задач лежит, по-видимому, в необходимости изучения периодически повторяющихся явлений, обильные примеры чего дает астрономия. В самом деле, вопрос о периоде времени, состоящем одновременно из целого числа дней (х) и целого числа лет (у), приводит к неопределенному уравнению: 10 960 у = 30 х. Другие вопросы, например, о периоде совпадения некоторых явлений, приводят к полным неопределенным уравнениям. Индийские ученые умели находить целочисленные решения различных видов неопределенных уравнений 1-й и 2-й степени. Но характерная форма изложения, при которой не воспроизводится ни ход рассуждений, ни доказательства, не дает возможности судить о теоретико-числовых методах индийских математиков, хотя то немногое, что известно, показывает на наличие ряда таких методов. Индийская геометрия тоже носит все черты практического подхода к делу. Есть чертежи, есть правила, но иногда правил нет, а под чертежом написано только: «смотри!». Некоторый интерес представляют тригонометрические таблицы, в которых хорды заменены полухордами. При этом вводятся в рассмотрение, по существу, тригонометрические функции: синусы, косинусы и синусы-верзусы (sinvers а = 1 – cos а). — 263 —
|