Например, если обе функции являются степенными: V = pQm, S = F + cQh, m < 1, h < 1, то искомый барьерный уровень находим на основе выражения Пусть теперь обе функции являются параболами второй степени (рис. 3.5): V = aQ2 + bQ, S = cQ2 + dQ + F, где a, b, с, d — параметры парабол. Прибыль в зависимости от уровня выпуска составит: P = (a - c)Q2 + (b - d)Q - F, (3.6) а барьерный объем выпуска находится из уравнения Добавим, что в рассмотренных условиях можно рассчитать объем выпуска, максимизирующего размер прибыли (обозначим его как Qm). Для этого, как известно, достаточно найти производную функции прибыли и приравнять ее нулю. В случае, когда прибыль описывается выражением (3.6), находим Как видим, положение точки максимума полностью определяется параметрами соответствующих парабол. Причем необходимым условием существования максимума являются следующие соотношения: d > b; a > с. Если b > d и а > с, то прибыль монотонно растет вместе с увеличением выпуска. Нелинейную модель можно представить и в неформализованном виде — как таблицу данных, характеризующих затраты и стоимость продукции в зависимости от размера выпуска.
ПРИМЕР 3 В приведенной ниже таблице и на диаграмме (рис. 3.6) содержатся данные о затратах, стоимости продукции и ожидаемой прибыли.
Барьерный выпуск равен 5. Наибольшая прибыль приходится на выпуск, равный 20. Сравнение финансовых показателей на основе барьерных величин. Перейдем к решению простой задачи, иллюстрирующей возможности метода при решении некоторых проблем в финансово-кредитной области. Допустим, необходимо выбрать один из двух вариантов поступлений денежных средств: S1; S2 со сроками n1; n2, причем S2 > S1; п2 > n1, иначе постановка задачи не имеет экономического смысла — выбор очевиден. Решение основано на сравнении величин современной стоимости соответствующих денежных сумм. Таким образом, выбор зависит от существующего или ожидаемого уровня доходности денежных инвестиций в виде процентной ставки (управляющая переменная j). При выборе варианта следует ориентироваться на значение барьерной ставки[14], т. е. ставки, при которой оба варианта оказываются равноценными по доходности. Рассмотрим метод решения этой задачи для двух вариантов расчета современных стоимостей по простой и сложной процентным ставкам. Для определения барьерных уровней ставок найдем равенства "конкурирующих" функций — современных стоимостей двух платежей P1 = P2. Для простой ставки имеем — 32 —
|