Сказанное выше позволяет сформулировать общее определение для обсуждаемого метода как способа расчета барьерного значения управляющего параметра исходя из равенства двух "конкурирующих" функций этого параметра. Содержание управляющего параметра и функций, как видим, определяется конкретными условиями решаемой задачи. В рассмотренном примере управляющим параметром является объем производства, "конкурирующими" функциями — доход (выручка) и затраты. Вариантом рассмотрения задачи является определение минимально допустимого срока выпуска продукции при заданных годовых объемах производства, т. е. срока окупаемости. Объем производства выступает здесь как параметр, а срок выпуска — как управляющая переменная. Вместо годовых постоянных затрат учитывается общий размер инвестиций и сопряженных затрат (параметр F). Тогда "конкурирующие" функции имеют вид V = nQp; S = F + nQc, где n — срок выпуска. Барьерный срок окупаемости nk (методы расчета срока окупаемости для разных ситуаций рассматриваются в гл. 6) определяется как (3.5) § 3.2. Нелинейные моделиЛинейная модель во многих случаях дает практически приемлемое описание ситуации. Однако могут возникать ситуации, когда процесс формирования затрат и (или) стоимости продукции более адекватно описывается нелинейными функциями и имеются достаточно надежные данные для получения соответствующих кривых. Вид и параметры таких кривых могут быть установлены, например, в ходе статистического анализа, или их можно задать экспертно. Барьерный выпуск продукции. Вернемся к задаче по определению критического объема продукции, но в условиях, когда одна или обе "конкурирующие" функции являются нелинейными. Рассмотрим несколько возможных постановок задач. Пусть для начала стоимость продукции — линейная функция выпуска, а затраты на производство описываются нелинейной функцией. Предполагается, что удельные затраты сокращаются по мере роста масштабов производства, а цена единицы продукции не изменяется. Такое сочетание затрат и стоимости продукции представлено на рис. 3.3. Стоимость продукции находится по формуле (3.1). Допустим, общая сумма переменных затрат описывается степенной функцией cQh , причем 0 < h < 1. В этом случае общая сумма затрат составит: S = F + cQh. Разность "конкурирующих" функций в барьерной точке равна нулю: Решение сводится к нахождению корня этого выражения.
ПРИМЕР 2 Исходные данные: F = 100, р = 50, с = 40, h = 0,5. Соответственно имеем Получим Qk = 3,5. Сочетание двух нелинейных зависимостей, каждая из которых не имеет точки максимума, показано на рис. 3.4. Предполагается, что удельные затраты и цены сокращаются по мере роста выпуска продукции. — 31 —
|