Финансовый анализ производственных инвестиций

Страница: 1 ... 910111213141516171819 ... 125

Линейно изменяющийся непрерывный поток платежей. Функция такого потока

Rt =R0+at,

где R0 начальный размер платежа, выплачиваемого в единицу времени, в котором измеряется срок ренты;

а — прирост в единицу времени.

Современная стоимость получена с помощью интегрирования функции потока платежей:

где — коэффициент приведения постоянной непрерывной ренты (см. (1.25)).

ПРИМЕР 12

Намечается ежегодно в течение трех лет увеличивать выпуск продукции на 1 млрд. руб. Базовый уровень выпуска — 10 млрд. руб. Необходимо определить суммарный стоимостной объем выпуска с начислением процентов — сила роста 8%.

Сначала определим современную стоимость данного непрерывного потока поступлений (см. (1.28)):

Коэффициент приведения составит:

Таким образом, А = 30,512 млн. руб.

Затем на основе (1.27) находим наращенную сумму:

Чтобы методика определения современной стоимости непрерывной ренты была более наглядной, решим поставленную задачу иным способом, предварительно трансформировав непрерывную ренту в дискретную с платежами в середине периодов. Получим такую последовательность: 10,5; 11,5; 12,5. Затем определим процентную ставку, эквивалентную силе роста 0,08. Находим

i = е0,08-1=0,083287.

Искомая величина составит:

А = 10,5 х 1,08329-0,5 + 11,5 х l,08329-1,5 + 12,5 х 1,08329-2,5 = = 30,522.

Как видим, погрешность незначительна.

Экспоненциальный рост платежей. Поток платежей описывается экспоненциальной функцией

Rt = R х еgt.

Назовем параметр g непрерывным темпом прироста платежей. Между принятым в статистике дискретным темпом прироста k и непрерывным существует следующая зависимость:

g = ln(l + k).

Современная величина такой ренты находится следующим образом:

(1.29)

В знаменателе формулы (1.29) фигурирует разность параметров, характеризующих непрерывные процессы. Эту разность легко найти с помощью дискретных параметров роста платежей и начисления процентов, которые обычно и задаются в условиях формирования потока платежей, а именно

ПРИМЕР 13

Ожидается, что прирост доходов на протяжении трех лет составит 5% в год (k = 0,05). Какова современная стоимость и наращенная сумма потока доходов, если R = 100, i = 7%, п = 3 года?

Из условий задачи следует:

Таким образом, на основе (1.29) получим:

§1.4. Эквивалентные потоки платежей

В финансовом анализе важную роль играет принцип эквивалентности, согласно которому платежи считаются эквивалентными, если их современные стоимости одинаковы. Сказанное справедливо и применительно к потокам платежей. Так, например, нерегулярный поток платежей и постоянная рента оказываются эквивалентными, если имеет место равенство

— 14 —
Страница: 1 ... 910111213141516171819 ... 125