Финансовый анализ производственных инвестиций

Страница: 1 ... 1011121314151617181920 ... 125

Коль скоро потоки платежей являются эквивалентными, замена одного потока другим не изменяет финансовое положение участвующих сторон. Пусть в контракте оговорен поток поступлений со значительными колебаниями их размеров. Возникла необходимость сравнения с конкурирующими условиями, предусматривающими выплату ренты с постоянными членами. Сроки и остальные условия у двух потоков платежей одинаковы. Определим неизвестный размер члена постоянной ренты R.

Напомним, что . Таким образом:

Как видим, R представляет собой среднюю арифметическую взвешенную с весами, равными дисконтным множителям. Пусть заменяющая рента в рассмотренном случае имеет срок n1, отличающийся от п. Тогда

Аналогичным образом можно определить любой другой параметр заменяющего эквивалентного потока платежей. Заметим, что заменяющий поток может отличаться от заменяемого по всем параметрам и по виду. Например, дискретная рента может быть заменена непрерывной и т. д.

§1.5. Определение доходности на основе потока платежей

В § 1.2 мельком была затронута проблема определения размера процентной ставки по остальным параметрам потока платежей. Вернемся к этой проблеме применительно к определению доходности по основным инвестиционным схемам. Остановимся на трех из них:

  • мгновенные (разовые) инвестиции, отдача в виде регулярного или нерегулярного потока платежей;
  • инвестиции в финансовый инструмент (облигацию), постоянная отдача (купонный доход) и возврат номинала в конце срока;
  • инвестиции в финансовый инструмент (долговое обязательство, кредит), последовательное обслуживание долга (равные суммы погашения основного долга и периодическая выплата процентов).

Во второй и третьей схемах предусматриваются два источника дохода: доход от прироста капитала в виде разности между суммой номинала инструмента и его ценой (capital gain) и начисленные проценты.

Условия перечисленных схем можно кратко записать как

где D — размер инвестиций;

Rt, R — члены потока поступлений;

K — цена (или курс) финансового инструмента;

d — размер разового погашения долга;

It, — сумма процентов за период.

Приведем уравнения эквивалентности, с помощью которых определяются показатели доходности (в виде процентных ставок) соответствующих инвестиционных схем. Для первой схемы имеем:

(1.30)

где дисконтные множители определяются по искомой процентной ставке j.

ПРИМЕР 14

Сумма мгновенных инвестиций — 100, срок — 5 лет, поступления — в конце каждого года. Как видно из расчета, представленного в нижеследующей таблице, эквивалентность инвестиций и отдачи имеет место в случае, когда дисконтирование производится по ставке 21,46%. Последний показатель характеризует доходность финансовой операции.

— 15 —
Страница: 1 ... 1011121314151617181920 ... 125