Финансовый анализ производственных инвестиций

Страница: 1 ... 56789101112131415 ... 125

б) Число выплат и начислений процентов в году равно р; используется номинальная годовая процентная ставка (nominal rate) j:

В этом случае взаимозависимость наращенной суммы и современной ее стоимости имеет вид:

(1.15)

Нетрудно догадаться, что, чем чаще происходят платежи, тем больше наращенная сумма и современная стоимость ренты. Заметим, что формулы (1.6) и (1.9) применимы и для определения современной стоимости p-срочной ренты для варианта б. В этом случае (например, при погашении ипотечного кредита) переменная п означает общее число периодов, i — ставку за период (но не годовую ставку), R — сумму разового платежа. Номинальная процентная ставка в этом случае составит: j = i x p, а годовая эффективная ставка (effective rate) находится как (1 + i)p.

ПРИМЕР 4

В условия ренты примера 2 внесем изменение. Пусть теперь рента выплачивается поквартально, р = 4. Для варианта а (начисление процентов один раз в году) находим:

Для варианта б по формулам (1.13) и (1.14) получим:

Аналогичные результаты находим по формулам (1.6) и (1.9) при условии, что п = 20, i = 18,5/4 = 4,625%, R = 4/4 = 1. Например, современная стоимость такой ренты по этим данным составит:

Постоянные ренты пренумерандо и ренты с платежами в середине периодов. Напомним, что ренты пренумерандо предполагают выплаты в начале периодов. В этом случае каждый платеж "работает" на один период больше, чем у рент постнумерандо, обобщающие показатели больше аналогичных характеристик рент постнумерандо пропорционально величине соответствующего множителя наращения за один период. Так, для годовых рент такой множитель равен (1 + i), откуда вместо (1.6) и (1.9) имеем:

A = Ran;i(1 + i); S = Rsn;i(1 + i).

Для р-срочных рент (вариант а) корректировочный множитель наращения равен (1 + i)1/p, а для варианта б он имеет вид: (1 + j/p).

ПРИМЕР 5

Пусть рента примера 4 выплачивается не в конце, а в начале кварталов. Тогда обобщающие параметры увеличатся в 1,1851/4 = = 1,04335 раза (вариант а) и в раза (вариант б).

Для годовых рент с платежами в середине периодов получим:

Формулы для производных расчетов. Выше были приведены формулы для расчета основных стоимостных характеристик постоянных рент — А и S. В ряде ситуаций эти величины оказываются заданными и необходимо рассчитать какой-либо неизвестный параметр. Что касается параметров R и п, то они определяются достаточно просто[7], чего нельзя сказать о расчете процентной ставки i.

ПРИМЕР 6

Долг в сумме 100 млн. руб. погашается постоянной годовой рентой в течение 5 лет. На остаток долга начисляются проценты по ставке 20% годовых. Приравняв сумму долга современной стоимости погасительных платежей, можно записать 100 = Ra5;20.

— 10 —
Страница: 1 ... 56789101112131415 ... 125